

Proposal for

Source Code Automated Refactoring Toolkit (CodART)

Morteza Zakeri†

† Ph.D. Student, Iran University of Science and Technology, Tehran, Iran (m-zakeri@live.com).

Version 0.2.0 (16 March 2021)

Abstract— Software refactoring is performed by changing the software structure without modifying its external behavior.

Many software quality attributes can be enhanced through the source code refactoring, such as reusability, flexibility,

understandability, and testability. Refactoring engines are tools that automate the application of refactorings: first, the

user chooses a refactoring to apply, then the engine checks if the transformation is safe, and if so, transforms the program.

Refactoring engines are a key component of modern Integrated Development Environments (IDEs), and programmers

rely on them to perform refactorings. In this project, an open-source software toolkit for refactoring Java source codes,

namely CodART, will be developed. ANTLR parser generator is used to create and modify the program syntax-tree and

produce the refactored version of the program. To the best of our knowledge, CodART is the first open-source refactoring

toolkit based on ANTLR.

Index Terms: Software refactoring, refactoring engine, search-based refactoring, ANTLR, Java.

1 Introduction

Refactoring is a behavior-preserving program transformation that improves the design of a program. Refactoring engines

are tools that automate the application of refactorings. The programmer need only select which refactoring to apply, and

the engine will automatically check the preconditions and apply the transformations across the entire program if the

preconditions are satisfied. Refactoring is gaining popularity, as evidenced by the inclusion of refactoring engines in

modern IDEs such as IntelliJ IDEA1, Eclipse2 , or NetBeans3 for Java.

Considering the EncapsulateField refactoring as an illustrative example. This refactoring replaces all references to a field

with accesses through setter and getter methods. The EncapsulateField refactoring takes as input the name of the field to

encapsulate and the names of the new getter and setter methods. It performs the following transformations:

• creates a public getter method that returns the field's value

• creates a public setter method that updates the field's value

to a given parameter's value

• replaces all field reads with calls to the getter method

• replaces all field writes with calls to the setter method

• changes the field's access modifier to private

The EncapsulateField refactoring checks several preconditions, including that the code does not already contain accessor

methods and that these methods are applicable to the expressions in which the field appears. Figure 1 shows a sample

program before and after encapsulating the field f into the getF and setF methods.

Figure 1. Example EncapsulateField refactoring

1 https://www.jetbrains.com/idea/

2 http://www.eclipse.org

3 http://www.netbeans.org

mailto:m-zakeri@live.com
https://www.jetbrains.com/idea/
http://www.eclipse.org/
http://www.netbeans.org/

 Source Code Automated Refactoring Toolkit (CodART) M. Zakeri

2

Refactoring engines must be reliable. A fault in a refactoring engine can silently introduce bugs in the refactored program

and lead to challenging debugging sessions. If the original program compiles, but the refactored program does not, the

refactoring is obviously incorrect and can be easily undone. However, if the refactoring engine erroneously produces a

refactored program that compiles but does not preserve the semantics of the original program, this can have severe

consequences.

To perform refactoring correctly, the tool has to operate on the syntax tree of the code, not on the text. Manipulating the

syntax tree is much more reliable to preserve what the code is doing. Refactoring is not just understanding and updating

the syntax tree. The tool also needs to figure out how to rerender the code into text back in the editor view, called code

transformation. All in all, implementing decent refactoring is a challenging programming exercise, required compiler

knowledge.

In this project, we want to develop CodART, a toolkit for applying a given refactoring on the source code and obtain the

refactored code. To this aim, we will use ANTLR [1] to generate and modify the program syntax tree. CodART

development consists of two phases: In the first phase, 47 common refactoring operations will be automated, and in the

second phase, an algorithm to find the best sequence of refactorings to apply on a given software will be developed using

many-objective search-based approaches.

The rest of this white-paper is organized as follows. Section 2 describes the refactoring operations in detail. Section 3

explains code smells in detail. Section 4 briefly discusses the search-based refactoring techniques and many-objective

evolutionary algorithms. Section 5 explains the implementation details of the current version of CodART. Section 6 lists

the Java project used to evaluate CodART. Section 7 articulates the proposals that existed behind the CodART projects.

Finally, the conclusion and future works are discussed in Section 8.

2 Refactoring operations

This section explains the refactoring operations used in the project. A catalog of 72 refactoring operations has been

proposed by Fowler [2]. Each refactoring operation has a definition and is clearly specified by the entities in which it is

involved and the role of each. Table 1 describes the desirable refactorings, which we aim to automate them. It worth

noting that not all of these refactoring operations are introduced by Fowler [2]. A concrete example for most of the

refactoring operations in the table is available at https://refactoring.com/catalog/. Examples of other refactorings can be

found at https://refactoring.guru/refactoring/techniques and https://sourcemaking.com/refactoring/refactorings.

Table 1. Refactoring operations

Refactoring Definition Entities Roles

Move class Move a class from a package to another package

class

source package, target package

moved class

Move method Move a method from a class to another. class

method

source class, target class

moved method

Merge packages Merge the elements of a set of packages in

one of them

package source package, target package

Extract/Split package Add a package to compose the elements of

another package

package source package, target package

Extract class Create a new class and move fields and

methods from the old class to the new one

class

method

source class, new class

moved methods

Extract method Extract a code fragment into a method method

statement

source method, new method

moved statements

Inline class Move all features of a class in another one

and remove it

class source class, target class

Move field Move a field from a class to another class

field

source class, target class

field

Push down field Move a field of a superclass to a subclass class

field

super class, sub classes

move field

Push down method Move a method of a superclass to a

subclass

class

method

super class, sub classes

moved method

Pull up field Move a field from subclasses to the

superclass

class

field

sub classes, super class

moved field

Pull up method Move a method from subclasses to the

superclass

class

method

sub classes, super class

moved method

Increase field visibility Increase the visibility of a field from

public to protected, protected to package

or package to private

class

field

source class

source filed

https://refactoring.com/catalog/
https://refactoring.guru/refactoring/techniques
https://sourcemaking.com/refactoring/refactorings

 Source Code Automated Refactoring Toolkit (CodART) M. Zakeri

3

Decrease field visibility Decrease the visibility of a field from

private to package, package to protected or

protected to public

class

field

source class

source filed

Make field final Make a non-final field final class

field

source class

source filed

Make field non-final Make a final field non-final class

field

source class

source filed

Make field static Make a non-static field static class

field

source class

source filed

Make field non-static Make a static field non-static class

field

source class

source filed

Remove field Remove a field from a class class

field

source class

source filed

Increase method

visibility

Increase the visibility of a method from

public to protected, protected to package

or package to private

class

method

source class

source method

Decrease method

visibility

Decrease the visibility of a method from

private to package, package to protected or

protected to public

class

method

source class

source method

Make method final Make a non-final method final class

method

source class

source method

Make method non-final Make a final method non-final class

method

source class

source method

Make method static Make a non-static method static class

method

source class

source method

Make method non-static Make a static method non-static class

method

source class

source method

Remove method Remove a method from a class class

method

source class

source method

Make class-final Make a non-final class final class source class

Make class non-final Make a final class non-final class source class

Make class abstract Change a concrete class to abstract class source class

Make class concrete Change an abstract class to concrete class source class

Extract subclass Create a subclass for a set of features class

method

source class, new subclass

moved methods

Extract interface Extract methods of a class into an interface class

method

source class, new interface

interface methods

Inline method Move the body of a method into its callers

and remove the method

method source method, callers method

Collapse hierarchy Merge a superclass and a subclass class superclass, subclass

Remove control flag Replace control flag with a break class

method

source class

source method

Replace nested

conditional with guard

clauses

Replace nested conditional with guard

clauses

class

method

source class

source method

Replace constructor

with a factory function

Replace constructor with a factory

function

class source class

Replace exception with

test

Replace exception with precheck class

method

source class

source method

Rename field Rename a field class

field

source class

source filed

Rename method Rename a method class

method

source class

source method

Rename class Rename a class class source class

Rename package Rename a package package source package

Encapsulate field

Create setter/mutator and getter/accessor

methods for a private field

class

field

source class

source filed

Replace parameter with

query

Replace parameter with query class

method

source class

source method

Pull up constructor body

Move the constructor class

method

subclass class, superclass

constructor

Replace control flag

with break

Replace control flag with break class

method

source class

source method

Remove flag argument

Remove flag argument class

method

source class

source method

Total 47 — —

 Source Code Automated Refactoring Toolkit (CodART) M. Zakeri

4

3 Code smells

Deciding when and where to start refactoring—and when and where to stop—is just as important to refactoring as

knowing how to operate its mechanics [2]. To answer this important question, we should know the refactoring activities.

The refactoring process consists of six distinct activities [3]:

1. Identify where the software should be refactored.

2. Determine which refactoring(s) should be applied to the identified places.

3. Guarantee that the applied refactoring preserves behavior.

4. Apply the refactoring.

5. Assess the effect of the refactoring on quality characteristics of the software (e.g., complexity, understandability,

maintainability) or the process (e.g., productivity, cost, effort).

6. Maintain the consistency between the refactored program code and other software artifacts (such as

documentation, design documents, requirements specifications, tests, etc.).

The first decision that needs to be made is to determine where the software should be refactored. The most general

approach to detect program parts that require refactoring is the identification of code smells. According to Beck [2], bad

smells are “structures in the code that suggest (sometimes scream for) the possibility of refactoring.”

Code smells are code snippets with design problems. Their presence in the code makes software maintenance difficult

and affects the quality of software. When a code smell is detected, it is suggested to do refactoring to remove the code

smells in the code that is refactoring to each other.

Various code smells with different names and definitions are proposed by software engineering researchers and

practitioners. Table 2 lists the 20 most well-known code smells which are considered in the first version of the CodART

project. However, there are other code smells in the software engineering literature. A complete list of existing code

smells, along with more information about code smells, their features, and their relation with refactorings, has been

discussed in [2].

Table 2. Code smells

Code smell Descriptions and other names

God class The class defines many data members (fields) and methods and exhibits low cohesion. The

god class smell occurs when a huge class surrounded by many data classes acts as a

controller (i.e., takes most of the decisions and monopolizes the software's functionality).

 Other names: Blob, large class, brain class.

Long method This smell occurs when a method is too long to understand and most presumably perform

more than one responsibility.

 Other names: God method, brain method, large method.

Feature envy This smell occurs when a method seems more interested in a class other than the one it

actually is in.

Data class This smell occurs when a class contains only fields and possibly getters/setters without

any behavior (methods).

Shotgun surgery This smell characterizes the situation when one kind of change leads to many changes to

multiple different classes. When the changes are all over the place, they are hard to find,

and it is easy to miss a necessary change.

Refused bequest This smell occurs when a subclass rejects some of the methods or properties offered by its

superclass.

Functional

decomposition

This smell occurs when the experienced developers coming from procedural languages

background write highly procedural and non-object-oriented code in an object-oriented

language.

Long parameter list This smell occurs when a method accepts a long list of parameters. Such lists are hard to

understand and difficult to use.

Promiscuous package A package can be considered promiscuous if it contains classes implementing too many

features, making it too hard to understand and maintain. As for god class and long method,

 Source Code Automated Refactoring Toolkit (CodART) M. Zakeri

5

this smell arises when the package has low cohesion since it manages different

responsibilities.

Misplaced class A Misplaced Class smell suggests a class that is in a package that contains other classes

not related to it.

Switch statement This smell occurs when switch statements that switch on type codes are spread across the

software system instead of exploiting polymorphism.

Spaghetti code This smell refers to an unmaintainable, incomprehensible code without any structure. The

smell does not exploit and prevents the use of object-orientation mechanisms and

concepts.

Divergent change Divergent change occurs when one class is commonly changed in different ways for

different reasons.

Other names: Multifaceted abstraction

Deficient encapsulation This smell occurs when the declared accessibility of one or more members of abstraction

is more permissive than actually required.

Swiss army knife This smell arises when the designer attempts to provide all possible uses of the class and

ends up in an excessively complex class interface.

Lazy class Unnecessary abstraction

Cyclically-dependent

modularization

This smell arises when two or more abstractions depend on each other directly or

indirectly.

Primitive obsession This smell occurs when primitive data types are used where an abstraction encapsulating

the primitives could serve better.

Speculative generality This smell occurs where abstraction is created based on speculated requirements. It is often

unnecessary that makes things difficult to understand and maintain.

Message chains A message chain occurs when a client requests another object, that object requests yet

another one, and so on. These chains mean that the client is dependent on navigation along

with the class structure. Any changes in these relationships require modifying the client.

Total 20

4 Search-based refactoring

After refactoring operations were automated, we must decide which refactorings souled be performed in order to elevate

software quality. The concern about using refactoring operations in Table 1 is whether each one of them has a positive

impact on the refactored code quality or not. Finding the right sequence of refactorings to be applied in a software artifact

is considered a challenging task since there is a wide range of refactorings. The ideal sequence is, therefore, must correlate

to different quality attributes to be improved as a result of applying refactorings.

Finding the best refactoring sequence is an optimization problem that can be solved by search techniques in the field

known as Search-Based Software Engineering (SBSE) [4]. In this approach, refactorings are applied stochastically to the

original software solution, and then the software is measured using a fitness function consisting of one or more software

metrics. There are various metric suites available to measure characteristics like cohesion and coupling, but different

metrics measure the software in different ways, and thus how they are applied will have a different effect on the outcome.

The second phase of this project is to use a many-objective search algorithm to find the best sequence of refactoring on a

given project. Recently, many-objective SBSE approach for refactoring [4]–[6] and remodularization, regrouping a set of

classes C in terms of packages P, [7] has gained more attention due to its ability to find the best sequence of refactoring

operations, which is led to the improvement in software quality. Therefore, we first focus on implementing the proposed

approach approaches in [4], [6], [7] as fundamental works in this area. Then, we will improve their approach. As a new

contribution, we add new refactoring operations and new objective functions to improve the quality attribute of the

software. We also evaluate our method on the new software projects which are not used in previous works.

 Source Code Automated Refactoring Toolkit (CodART) M. Zakeri

6

5 Implementation

This section describes implementation details of the CodART. It includes CodART architecture, high-level repository

directories structure, refactoring automation with ANTLR parser generator, and refactoring recommendation through

many-objective search-based software engineering techniques.

5.1 CodART architecture

5.2 High-level structure of project repository

5.3 Refactoring automation

Each refactoring operation in Table 1 is implemented as an API, with the refactoring name. The API receives the involved

entities with their refactoring roles and other required data as inputs, checks the feasibility of the refactoring using

refactoring preconditions described in [2], performs the refactoring if it is feasible, and returns the refactored code or

return null if the refactoring is not feasible.

The core of our refactoring engine is a syntax-tree modification algorithm. Fundamentally, ANTLR is used to generate

and modify the syntax-tree of a given program. Each refactoring API is an ANTLR Listener or visitor class, which required

argument by its constructor and preform refactoring when call by parse-tree walker object. The refactoring target and

input parameters must read from a configuration file, which can be expressed in JSON, XML, or YAML formats.

The key to use ANTLR for refactoring tasks is the TokenStreamRewriter object that knows how to give altered views of

a token stream without actually modifying the stream. It treats all of the manipulation methods as "instructions" and

queues them up for lazy execution when traversing the token stream to render it back as text. The rewriter executes those

instructions every time we call getText(). This strategy is very effective for the general problem of source code

instrumentation or refactoring. The TokenStreamRewriter is a powerful and extremely efficient means of manipulating a

token stream.

5.4 Refactoring recommendation

A solution consists of a sequence of n refactoring operations applied to different code elements in the source code to fix.

In order to represent a candidate solution (individual/chromosome), we use a vector-based representation. Each vector’s

dimension represents a refactoring operation where the order of applying these refactoring operations corresponds to their

positions in the vector. The initial population is generated by randomly assigning a sequence of refactorings to some code

fragments. Each generated refactoring solution is executed on the software system S. Once all required data is computed,

the solution is evaluated based on the quality of the resulting design.

6 Benchmark projects and testbed

To ensure CodART works properly, we are running it on many real-life software projects.

Refactorings are applied to the software systems listed in Table 3. Benchmark projects may update and extend in the

future. For the time being, we use a set of well-known open-source Java projects that have been intensely studied in

previous works. We have also added two new Java software programs, WEKA and ANTLR, to examine the versatility of

CodART performance on real-life software projects.

Table 3. Software systems refactored in this project

System Release Previous releases Domain Reference

Xerces-J v2.7.0 — software packages for parsing XML [4], [7]

Azureus v2.3.0.6 — Java BitTorrent client for handling

multiple torrents

[4]

ArgoUML v0.26 and v0.3 — UML tool for object-oriented design [4]

Apache Ant v1.5.0 and v1.7.0 — Java build tool and library [4]

GanttProject v1.10.2 and v1.11.1 — project management [4], [7], [6]

JHotDraw v6.1 and v6.0b1 and v5.3 — graphics tool [7], [6], [5]

JFreeChart v1.0.9 — chart tool [7]

Beaver v0.9.11 and v0.9.8 — parser generator [6], [5]

https://github.com/apache/xerces2-j
https://github.com/vuze/vuze-remote-for-android
https://github.com/argouml-tigris-org/argouml
https://github.com/apache/ant
https://github.com/bardsoftware/ganttproject
https://github.com/wumpz/jhotdraw
https://github.com/jfree/jfreechart
https://github.com/svn2github/beaver-parser-generator-v09

 Source Code Automated Refactoring Toolkit (CodART) M. Zakeri

7

Apache XML-RPC v3.1.1 — B2B communications [6], [5]

JRDF v0.3.4.3 — semantic web (resource management) [6]

XOM v1.2.1 — XML tool [6]

JSON v1.1 — software packages for parsing JSON [5]

JFlex v1.4.1 — lexical analyzer generator [5]

Mango v2.0.1 — [5]

Weka v3.9 — data mining tool New

ANTLR v4.8.0 — parser generator New

7 CodART in IUST

Developing a comprehensive refactoring engine required thousand of hours of programming. Refactoring is not just

understanding and updating the syntax tree. The tool also needs to figure out how to rerender the code into text back in

the editor view. According to a quote by Fowler [2] in his well-known refactoring book: “implementing decent refactoring

is a challenging programming exercise—one that I’m mostly unaware of as I gaily use the tools.”

We have defined the basic functionalities of the CodART system as several student projects with different proposals.

Students who will take our computer science course, including compiler design and construction, advanced compilers,

and advanced software engineering, must be worked on these proposals as part of their course fulfillments. These projects

try to familiarize students with the practical usage of compilers from the software engineering point of view.

The detailed information of our current proposals are available in the following links:

Core refactoring operations development

Core code smells development

Core search-based development

Core refactoring to design patterns development

Students whose final project is confirmed by the reverse engineering laboratory have an opportunity to work on CodART

as an independent research project. The only prerequisite is to pass the compiler graduate course by Dr. Saeed Parsa.

7.1 Agenda for Compiler course project in winter Fall 2020

The following proposal was initially prepared for the IUST Compiler and Advanced compiler courses in Fall 2020.

Students must form groups of up to three persons, and each group must implement several refactoring operations. The

exact list of refactoring will be assigned to each group subsequently. The refactoring operations in Table 1 may update

during the semester.

As an example of refactoring automation, we have implemented EncapsulateField refactoring, illustrated in Figure 1. A

naïve implementation is available on the project's official Github page at https://m-zakeri.github.io/CodART. In addition,

26 refactoring operations in Table 1 have been implemented by MultiRefactor4 [8] based on RECODER5, three of them

have been implemented by JDeodorant [9], and other operations have been automated in [4], [7]. RECODER extracts a

model of the code that can be used to analyze and modify the code before the changes are applied and written to file. The

tool takes Java source code as input and will output the modified source code to a specified folder. The input must be

fully compilable and must be accompanied by any necessary library files as compressed jar files.

7.1.1 Grading policy for BSc students

Table 4 Grading policy for BSc students

Action Score (100)

Refactoring operations implementation 50

Evaluation of the tool on the benchmark projects 30

Documentations 20

Search-based refactoring recommendation 30+ (extra bonus)

4 https://github.com/mmohan01/MultiRefactor

5 http://sourceforge.net/projects/recoder

https://ws.apache.org/xmlrpc/
http://jrdf.sourceforge.net/index.html
https://github.com/elharo/xom
https://github.com/stleary/JSON-java
https://github.com/jflex-de/jflex
https://github.com/jfaster/mango
https://github.com/ohmrefresh/Weka-Android-3.9.1-SNAPSHOT
https://github.com/antlr/antlr4
https://m-zakeri.github.io/CodART
https://github.com/mmohan01/MultiRefactor
http://sourceforge.net/projects/recoder

 Source Code Automated Refactoring Toolkit (CodART) M. Zakeri

8

7.1.2 Grading policy for MSc students

Table 3 shows the grading policy. The grading policy may change in the future.

Table 5. Grading policy for MSc students

Action Score (100)

Refactoring operations implementation 40

Search-based refactoring recommendation 30

Evaluation of the tool on the benchmark projects 20

Documentations 10

Improving the state-of-the-arts papers 30+ (extra bonus)

7.2 Agenda for Compiler and Advanced software engineering courses project in Winter and Spring 2021

The following proposal has been initially prepared for the IUST Compiler and Advanced Software Engineering courses

in Winter and Spring 2021.

Students must form groups of up to three persons. Each group must develop mechanisms for a subset of code smells listed

in Table 2. The exact list of code smells will be assigned to each group subsequently. The refactoring operations in Table

1 and code smells in Table 2 may update during the semester.

To facilitate and organized the development process, this proposal defines the project in various phases. The project is

divided into three separate phases.

In the first phase, students must read about refactoring and code smells and understand the current state of the CodART

completely. As a practice, they are asked to fix the existing issues on the project repository about refactoring operations

developed in the first proposal.

In the second pahse, each group is asked to develop algorithms to automatically detect one or more code smells in a given

Java project using ANTLR tool and other compiler techniques. TA team frequently helps the students at this phase to

develop their algorithms.

In the third phase, each group is asked to connect the code smells detection scripts to the corresponding refactoring and

automate the overall quality improvement process.

7.2.1 Grading policy for BSc students

Table 6 shows the grading policy according to the above-mentioned steps. It may change in the future.

Table 6. Grading policy for BSc students

Action Score (100)

Understanding the CodART project and Fix the existing issues 30

Implementing smell detection approaches 40

Connecting code smells to refactoring and harnessing the overall process 20

Documenting the new source codes and pushing them to GitHub 10

Improving the paper results by proposing a new idea 30+ (extra bonus)

7.2.2 Grading policy for MSc students

Table 6 shows the grading policy for MSc students. It may change in the future.

Table 7. Grading policy for BSc students

Action Score (100)

Understanding the paper and presenting it 20

Implementing the paper 30

Evaluating the implementation 30

Documenting the project 20

Testing project on all projects available in CodART benchmarks 20+ (extra bonus)

 Source Code Automated Refactoring Toolkit (CodART) M. Zakeri

9

8 Conclusion

Software refactoring is used to reduce the costs and risks of software evolution. Automated software refactoring tools can

reduce risks caused by manual refactoring, improve efficiency, and reduce software refactoring difficulties. Researchers

have made great efforts to research how to implement and improve automated software refactoring tools. However, the

results of automated refactoring tools often deviate from the intentions of the implementer. The goal of this project is to

propose an open-source refactoring engine and toolkit that can automatically find the best refactoring sequence required

for a given software and apply this sequence. Since the tool is work based on compiler principles, it is reliable to be used

in practice and has many benefits for software developer companies. Students who participate in the project will learn

compiler techniques such as lexing, parsing, source code analysis, and source code transformation. They also learn about

software refactoring, search-based software engineering, optimization, software quality, and object-orient metrics.

Conflict of interest

The project is supported by the IUST Reverse Engineering Research Laboratory6. Interested students may continue

working on this project to fulfill their final bachelor and master thesis or their internship.

References

[1] T. Parr and K. Fisher, “LL(*): the foundation of the ANTLR parser generator,” Proc. 32nd ACM SIGPLAN Conf.

Program. Lang. Des. Implement., pp. 425–436, 2011.

[2] M. K. B. Fowler, Refactoring: improving the design of existing code, Second Edi. Addison-Wesley, 2018.

[3] T. Mens and T. Tourwe, “A survey of software refactoring,” IEEE Trans. Softw. Eng., vol. 30, no. 2, pp. 126–

139, Feb. 2004.

[4] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó Cinnéide, and K. Deb, “On the use of many quality attributes

for software refactoring: a many-objective search-based software engineering approach,” Empir. Softw. Eng., vol.

21, no. 6, pp. 2503–2545, Dec. 2016.

[5] M. Mohan, D. Greer, and P. McMullan, “Technical debt reduction using search based automated refactoring,” J.

Syst. Softw., vol. 120, pp. 183–194, Oct. 2016.

[6] M. Mohan and D. Greer, “Using a many-objective approach to investigate automated refactoring,” Inf. Softw.

Technol., vol. 112, pp. 83–101, Aug. 2019.

[7] W. Mkaouer et al., “Many-Objective Software Remodularization Using NSGA-III,” ACM Trans. Softw. Eng.

Methodol., vol. 24, no. 3, pp. 1–45, May 2015.

[8] M. Mohan and D. Greer, “MultiRefactor: automated refactoring to improve software quality,” 2017, pp. 556–

572.

[9] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Ten years of JDeodorant: lessons learned from the hunt for

smells,” in 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering

(SANER), 2018, pp. 4–14.

6 http://reverse.iust.ac.ir/

http://reverse.iust.ac.ir/

	1 Introduction
	2 Refactoring operations
	3 Code smells
	4 Search-based refactoring
	5 Implementation
	5.1 CodART architecture
	5.2 High-level structure of project repository
	5.3 Refactoring automation
	5.4 Refactoring recommendation

	6 Benchmark projects and testbed
	7 CodART in IUST
	7.1 Agenda for Compiler course project in winter Fall 2020
	7.1.1 Grading policy for BSc students
	7.1.2 Grading policy for MSc students

	7.2 Agenda for Compiler and Advanced software engineering courses project in Winter and Spring 2021
	7.2.1 Grading policy for BSc students
	7.2.2 Grading policy for MSc students

	8 Conclusion

