Fundamentals of Computer and Programming

Lecture 3
C Programming Basics

Instructor: Morteza Zakeri, Ph.D.

(zakeri@aut.ac.ir)

Modified Slides from Dr. Hossein Zeinali and Dr. Bahador Bakhshi
School of Computer Engineering,

Amirkabir University of Technology

Spring 2025

®
b,

What We Will Learn

»What is the C

>
>

>

®

®

The C Language

» C is a general-purpose programming language

» C is developed by Dennis Ritchie at Bell
Laboratories (1972) — Now C18

» C is one of the widely used languages

> Application development

> System programs, most operating systems are
developed in C: Unix, Linux

» Many other languages are based on it

8 : £l

Programming in C Language

» C programming language
> A set of notations for representing programs

» C standard libraries

> A set of developed programs (functions)

» C programming environment

> A set of tools to aid program development

£ ;

The First Example

»Write a program that prints

“Hello the CE juniors :-)”

B

The First C Program

#include <stdio.h>

int main(void){
printf(“Hello the CE juniors

return 0;

:-) \n");

B

General Rules

» C is case sensitive:main is not Maln
»> A" is required after each statement

» Each program should have a main function
int main(void){..
void main(void){..
main(){..
int main(int argc, char ** argv){..

» Program starts running from the main

» You should follow coding styles (beautiful code)

£ ;

General Rules: Spaces

Equal Statements

int main(void){ int main (
void) {
printf("abc"); printf (
"abc"); return 0;
return 0;
return 0; return
0;

8 9 £l

General Rules: Spaces

Not Equal Statements

int main(void){

intmain(void) {

printf("abc def");

printf("abcdef");

B

Comments

/* Our first

C program */

#include <stdio.h>

int main(void){
//This program prints a simple message
printf(“Hello the CE juniors :-) \n");

return 0;

)
2 ..

The First C Program

> You should

» Develop the source code of program
» Compile

» Run

» Debug

» All of them can be done in IDE
> Code::Blocks, Dev-C++
> ClLion
> VS Code, Eclipse,

2 :

What We Will Learn

>

> Variables
> Types

>
>
>

®

Variables

> “write a program to calculate the sum of two
numbers given by user”

» Solving problems
> Input data = Algorithm = Output date

» What we need

» Implementing the algorithm
> Named Functions
> We will discuss later

> Storing the input/output data
> Variables

D)

Variables (cont’d)

»Data is stored in the main memory

> Variables

> Are the name of locations in the main memory

> WVe use names instead of physical addresses

» Specify the coding of the location
> What do the “01”s means!?
> What is the type of data?

@ .

Variables

» Variables in the C
<Qualifier> <Type> <l|dentifier>;

» <Qualifier>

> |s optional
> We will discuss later

» <Type>
> Specifies the coding

» <|dentifier>
> Is the name

@ .

Types: Integers

> Integer numbers

> Different types, different sizes, different ranges

Type Size Unsigned Signed

short | 6Bits [O, 216 _ 1] F 2’15,25_ 1
int 32Bits [0,2%- 1] FZ2L2- 1
long or 32/64

long int Bits [Q2¥% - 1] p=E==- 1

long long or 64 Bit
long long int i [O, 264 _ 1] 222 - 1

8 : £l

Types: Float and Double

» Floating point number
> float 32 bits
> double 64 bits
> long double 96 bits

» Limited precision
> float: 8 digits precision
> 1.0 ==1.0000000|

> double: |6 digits precision
> 1.0 ==1.000000000000000|

2 .

Types: Char

» Character
> Type: char

> Single letters of the alphabet, punctuation
symbols

» Should be single quotation
> ‘a,’ ‘A” ‘Z” ‘O,’ ¢ I ,’ ‘\n” ‘\,” ‘\O,

@ .

Types: Booleans

»#Hinclude <stdbool.h>

»Logics (Boolean): bool

»Only two values: false, true

20

B

Signed and Unsigned Types

> Integers in C and C++ are either signed or
unsigned.

» For each signed type there is an equivalent
unsigned type.

®

Signed Integers

» Signed integers are used to represent positive
and negative values.

» On a computer using two’s complement
arithmetic, a signed integer ranges from -2/
through 2™/-1.

®
b

Signed Integer Representation

Tow’s Complement (ranges from -2"! through
2 1-1).

4-bit
two's complement

representation

®

Unsigned Integers

» Unsigned integer values range from zero to a

maximum that de

> This maximum va

bends on the size of the type

ue can be calculated as 2"-1,

where n is the number of bits used to
represent the unsigned type.

®

Unsighed Integer Representation

Tow’s complement (ranges from 0 through 2" -1)

) 2
~ 4-bit >
S two’s complement =
"~ representation <
pt o
2

®
b

Integer Ranges

» Minimum and maximum values for an
integer type depend on
» The type’s representation
» Signedness
» The number of allocated bits

» The €99 standard sets minimum requirements
for these ranges.

®
b

Example Integer Ranges

» Char in Cis a |-byte integer.

signed char

128 o 127

0 255

unsigned char

short
- 32768 0 32767
unsigned short
0 65535

®

£l

Signed / Unsigned Characters

The type char can be signed or unsigned.

» When a signed char with its high bit set is
saved in an integer, the result is a negative
number.

» Use unsigned char for buffers, pointers,
and casts when dealing with character data
that may have values greater than 127 (0x7f).

5 £l

Overflow and Underflow

» All types have limited number of bits

» Limited range of number are supported

> Limited precision

» Overflow

> Assign a very big number to a variable that is larger
than the limit of the variable.

» Underflow

» Assign a very small number to a variable that is

smaller than the limit of the variable.

Example

D ; &

Overflow Examples

» Example of signed and unsigned integer
overflows:

1. int 1i;

2. unsigned mt;./7 #include <limits.h>

3. i = INT MAX; // 2,147,483,647

4., i++;
5. printf("i = %d\n", i};*—=‘—'4_l=_2'14?'433'Edﬂ

6. j = UINT MAX; // 4,294,967,295;
T. J++;
8. printf("j = %u\n", j};_=:£ g =

®

Underflow Examples

» Example of signed and unsigned integer

i = INT MIN; // -2,147,483,648;

underflows:
9.

10. i--;

11. printf("i
12. § = 0;
13. §--.

14. printf ("]

$d\n", i); — i — 2,147,483,647

" - .
$u\n", j),; -:ij — 4,294,967,295

®

Variables: ldentifier

> T

he hame of variables: identifier

> |c
>
>
>

entifier is a string (single word) of
Alphabet

Numbers

(3 5

> But

>
>
>
>

Cannot start with digits

Cannot be the key-words (reserved words)
Cannot be duplicated

Should not be library function names: printf

®

32

Variables: Identifier

» Use readable identifiers:
> Do not use memorystartaddress
> Use memory_start_address
> Do not use xyz, abc, z, x, t

» Use counter, sum, average, result,
parameter, ...

» Do not be lazy

> Use meaningful and readable names

33

®

C reserved words

» Cannot be used for identifiers

_Bool default if sizeof while
_Complex do inline static

_Imaginary double int struct

auto else long switch

break enum register typedef

case extern restrict union

char float return unsigned

const for short void

continue goto signed volatile

8 2 £l

C++ reserved words

» Cannot use for identifiers

asm
const_cast
export
mutable
private
static_cast
true

using

bool
delete
false
namespace
protected
template
try
virtual

catch
dynamic_cast
friend

new

public

this

typeid
wchar t©

class

explicit

inline

operator
reinterpret_cast
throw

typename

5

35

Variable ldentifiers

» Example of valid
identifiers

student
Grade

sum

all students

average grade 1

®

36

Variable ldentifiers

» Example of valid » Example of invalid
identifiers identifiers
* student if
 Grade e 32 test
°* sum °* wrong¥*
 all students ¢ sds

* average grade_1

37

®

Variables: Declaration (»l/)

» Reserve memory for variable: declaration
> <type> <identifier>;

> A variable must be declared before use

e char test _char;

- int sample int;

« long my_long;

« double sum, average, total;
- int id, counter, value;

®

38

Variable Type Effect (in complied langs.)

» Important note: the type of variable is NOT stored
in the main memory

> After compiling the program = NO type is associated
to memory locations!!!

» So, what does do the type!?!

> It determines the “operations” that work with the
memory location

»E.g.:
>int x, y, z; Z
> float a, b, ¢c; ¢ a + b;

8 » £l

Integer + and =
Performed by ALU

Variable Type Effect (in complied langs.)

» Important note: the type of variable is NOT stored
in the main memory

> After compiling the program - NO type is associated
to memory locations!!!

» So, what does do the type!?!

> It determines the “operations” that work with the
memory location

»E.g.:
>int x, y, z; Z
> float a, b, ¢c; ¢

8 ‘o £l

Integer + and =
Performed by ALU

Float + and =

Performed by FPU

Variables: Initial Values

> What is the initial value of a variable?

> In C:we do not know.
> In C:itis not 0.

We need to assign a value to each
variable before use it.

41

B

What We Will Learn

>

>
>

> Values
>
>

Q%b 42

Constants in C

> Values

» Numeric
> Integer numbers

> Float numbers
» Char
> Strings

» Symbolic constant

» Constant variables

Q% 43

Values

» Variables

> Save/restore data (value) to/from memory

» Declaration specifies the type and name
(identifier) of variable

» Assigning value to the variable: assighment
> <identifier> = <value>;

» Compute the <value> and save result in memory
location specified by <identifier>

Q%O 44

Values: Examples

int i, j;
long 1;

float f;
double d;

10;
20;
20.0;
218;
19.9;

Q H - U R
I

B

45

Value Types

> Where are the values stored?!
int x = 20;
X = 30 + 40;

» In main memory

> There is a logical section for these constant values

» So, we need to specify the type of the value
» The coding of Ols of the value

» The type of value is determined from the value
itself

D . &

Values (literals): Integers

> Valid integer values

|0, -20, +400; //Decimal (base 10) integer literal

0x12A, OXI|2A;//Hexadecimal (base 16) integer
literal

017; //Octal (base 8) integer literal
5000L;// long int integer literal

»Invalid integer values

10.0, -+20, -40 0, 600,000, 5000 L, 019;
8 7 £l

Binary-Hex and Hex-Binary: Examples

> HEX: base 16

> The letters that stand for hexadecimal numbers above 9
can be upper or lower case — both are used.

* More binary-hex conversions*:
— 101110100010=1011 1010 0010 =0x BA2.
— 101101110.01010011 = (000)1 0110 1110. 0101 0011 = 0x 16E.53.
— 1111111101.10000111 =(00)11 1111 1101.10000111 =0x 3FD.87.

* To convert hex-binary, just go the other direction!
— 0x 2375=(00)100011 0111 0101 =10001101110101.
— 0xCD.89=11001101.1000 1001 =11001101.10001001.
— 0x37AC.6=(00)11011110101100.011(0)=11011110101100.011.
— 0x3.DCAB=(00)11.1101110010101011=11.1101110010101011.

* Note that leading zeroes are added or removed as appropriate in the conversion processes.

5 £l

Values (literals): Float and Double

» Valid numbers:
0.2;.5;-.67;20.0;60el0; 7e-2
|2.5f; // float literal
12.5L; // long double literal

> Invalid numbers:

0. 2;20. 0;20 .0;7 e;6be; el?2

8 o £l

Values (literals): Chars

» Char values

» Should be enclosed in single quotation
> ‘a,, ‘A” ‘Z” ‘O’, ¢ I ,, ‘\n” ‘\”’ ‘\O’
» Each character has a code: ASCII code
> ‘A’ 65:°2’:97:°1’:49;2: 50;\0’ : 0
» Character vs. Integer
>PI1=1;21=2
> ‘1’==49 But | ==

@ .

Values (literals): Strings

» String is a set of characters

» Starts and ends with double quotation: "

» Examples:

"This is a simple string"

"This is a cryptic string #$56* (#"

@ .

Effect of Value Types

» The type of values have the same effect of
the type of variables

> It determines the “operations” that work on the

values
Integer + and =
Performed by ALU
>E.g.
> int z; z = 10 + 20;
> float c; C =

Float + and =

Performed by FPU

5

Values: Initialization

int 1 = 20;

int j = Ox20FE, k
int i, j = 40;
char ¢c1 = 'a’', c2
bool bl = true;
float f1 = 50e4;
double d = 50e-8;

5

53

Values: From memory to memory

int i, j

20;

/] 1 =

65536;
d;

20

// d
// b

65536.0
65536.0

0.0

Basic Input Output

» To read something: scanf

* Integer:scanf("%d", &int_variable);

* Float: scanf("%f", &float variable);

* Double:scanf("%1f", &double_variable);

» To print (show) something: printf

* Integer:printf("%d", int_variable);

* Float:printf("%f", float variable);

* Message (string literal): printf("message");

Q% 55

What We Will Learn

>

>
>

>
» Casting
>

Q% 56

Casting

»What is the casting!?

> When the type of variable and value are not the
same

» Example: Assigning double value to integer variable

> It is not a syntax error in C (only warning)

> But can cause runtime errors

> It is useful (in special situations)

> But we should be very very careful

8 5 £l

Implicit casting

» Implicit (2w)
> VWe don’t say it
»But we do it

char f2 = 50e6; /* cast from double to char */

int 1 = 98.01; /* cast from double to int */

@]

Explicit casting

» Explicit (z o)
> We say it

> And we do it

int i = (int) 98.1; /* Castfrom double to int */

char ¢ = (char) 90; /* Castfrom int to char */

@ .

Casting effects

» Casting from small types to large types
» There is not any problem
» No loss of data

int i;

short s;

float f;

double d;

s = 'A'; /s =65
i="B'; Il'i =66

f = 4566; //f=4566.0
d = 5666; //d=15666.0

2 ;

Casting effects (cont’d)

» Casting from large types to small types

» Data loss is possible
> Depends on the values

float f = 65536; // 65536.0
double d = 65536; // 65536.0
short s = 720; // 720

char ¢ = (char) 65536; // c =0
short s = (short) 65536; // s =0
int i = 1.22; // 1=1

int j = l1le23; [/ J = ???

2 .

Casting effects (cont’d)

» Casting to Boolean
> If value is zero =2 false

> If values is not zero = true

bool b2 = 'a', b3 = -9, b4 = 4.5; // true
bool b5 = @, b6 = false; b7 = '\@'; // false

62

®

Truncation Errors

» Truncation errors occur when
> an integer is converted to a smaller integer.

» type and the value of the original integer is outside
the range of the smaller type.

» Low-order bits of the original value are
preserved and the high-order bits are lost.

®
b

Truncation Error Example

. char cresult,

cl, c2, c3;

1
2. cl 100;
3

. c2 = 90;
L

Adding 1 and <2 exceeds the max
size of signed char (+127)

4. cresult = cl + c2;

N\

Truncation occurs when the
value Is assigned to a type
that is too small to represent
the resulting value

T

Integers smaller than int
are promoted to int or
unsigned int before being

operated on

Sign Errors

» Can occur when
* converting an unsigned integer to a
sighed integer.
* converting a signed integer to an
unsigned integer.

®

Sign Error Example

1. int 1 = -3;

2. unsigned short u;

Implicit conversion to smaller
3. u = i; Auns.lgned integer

4. printf("u = %$hu\n", u);
7

There are sufficient bits to represent the value so
no truncation occurs. The two's complement

representation is interpreted as a large signed
value, however, sou = 65533.

®

What We Will Learn

>

>
>

>
>

» Constants & Definition

Q% 67

Constant Variables!!!

» Constants

» Do not want to change the value

» Example: pi = 3.14
» We can only initialize a constant variable

» We MUST initialize the constant variables (why?!)

» const is a qualifier

const int STUDENTS = 38;

const long int MAX_GRADE = 20;
int i;

i = MAX_GRADE;

STUDENTS = 39: //ERROR

Definitions

» Another tool to define constants

> Definition is not variable
> We define definition, don’t declare them

> Pre-processor replaces them by their values before
compiling

#define STUDENTS 38
int main(void){
int 1i;
i = STUDENTS;
STUDENTS = 90; //ERROR! What compiler sees: 38 =90

D ; &

Definitions

#define NAME “Test”

#define AGE (20 / 2)

#define MIN(a, b) (((a)<(b))?(a):(b))

#define MAX(a, b) (((a)>(b))?(a):(b))

#define MYLIB

@ .

Summary

» Simple programs in C

» Two basics

> Variables
> Types
> Values
> Types

» Casting
» The type mismatch

» Constant variables & definitions

@ 8

Reference

» Reading Assignment: Chapter 2 of “C How to
Program”

with 2 ~ S
Case Studies Introducing

Applications
Programming znd

Systems PAUL DEITEL
Programming HARVEY DEITEL

D ; &

Questions

» Which of the following statements about C is FALSE?

A) C is case-sensitive.

B) The main function is optional in every program.

C) Statements must end with a semicolon.

D) Program execution starts with the main function

> Answer: B

D : &

Questions

» What is the size of an int data type in C on most
systems!

A) 16 bits B) 32 bits
C) 64 bits D) Depends on the system
» Answer: D

» What is the correct format specifier for reading an
integer value using scanf?

A) %i B) %d C) %f D) %c
> Answer: B

D)

Questions

» Which of the following scenarios would likely result in
data loss during casting?

A) Casting a double to float
B) Casting a float to int
C) Casting an int to char
D) All of the above

» Answer: D

8 s £l

	Slide 1: Lecture 3 C Programming Basics
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Signed and Unsigned Types
	Slide 22: Signed Integers
	Slide 23: Signed Integer Representation
	Slide 24: Unsigned Integers
	Slide 25: Unsigned Integer Representation
	Slide 26: Integer Ranges
	Slide 27: Example Integer Ranges
	Slide 28: Signed / Unsigned Characters
	Slide 29
	Slide 30: Overflow Examples
	Slide 31: Underflow Examples
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Variable Type Effect (in complied langs.)
	Slide 40: Variable Type Effect (in complied langs.)
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Binary-Hex and Hex-Binary: Examples
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Effect of Value Types
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Truncation Errors
	Slide 64: Truncation Error Example
	Slide 65: Sign Errors
	Slide 66: Sign Error Example
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

