
Lecture 3

C Programming Basics

Instructor: Morteza Zakeri, Ph.D.

(zakeri@aut.ac.ir)

Modified Slides from Dr. Hossein Zeinali and Dr. Bahador Bakhshi

School of Computer Engineering,

Amirkabir University of Technology

Spring 2025

Fundamentals of Computer and Programming

2

What We Will Learn

➢What is the C

➢Variables

➢Types

➢Values

➢Casting

➢Constants & Definition

3

4

The C Language

➢C is a general-purpose programming language

➢C is developed by Dennis Ritchie at Bell

Laboratories (1972) – Now C18

➢C is one of the widely used languages

➢ Application development

➢ System programs, most operating systems are

developed in C: Unix, Linux

➢ Many other languages are based on it

5

Programming in C Language

➢C programming language

➢ A set of notations for representing programs

➢C standard libraries

➢ A set of developed programs (functions)

➢C programming environment

➢ A set of tools to aid program development

6

The First Example

➢Write a program that prints

 “Hello the CE juniors :-)”

7

The First C Program

#include <stdio.h>

int main(void){

 printf("Hello the CE juniors :-) \n");

 return 0;

}

8

General Rules

➢C is case sensitive: main is not MaIn

➢A “;” is required after each statement

➢Each program should have a main function
int main(void){…

void main(void){…

main(){…

int main(int argc, char ** argv){…

➢Program starts running from the main

➢You should follow coding styles (beautiful code)

9

General Rules: Spaces

int main(void){ int main (
void) {

printf("abc");

return 0;

printf (
"abc"); return 0;

return 0; return
0;

Equal Statements

10

General Rules: Spaces

int main(void){ intmain(void) {

printf("abc def"); printf("abcdef");

Not Equal Statements

11

Comments

/* Our first

C program */

#include <stdio.h>

int main(void){

 //This program prints a simple message

 printf("Hello the CE juniors :-) \n");

 return 0;

}

12

The First C Program

➢You should

➢ Develop the source code of program

➢ Compile

➢ Run

➢ Debug

➢All of them can be done in IDE

➢ Code::Blocks, Dev-C++

➢ CLion

➢ VS Code, Eclipse,

13

What We Will Learn

➢What is the C

➢Variables

➢Types

➢Values

➢Casting

➢Constants & Definition

14

Variables

➢ “write a program to calculate the sum of two

numbers given by user”

➢ Solving problems

➢ Input data → Algorithm → Output date

➢What we need

➢ Implementing the algorithm

➢ Named Functions

➢ We will discuss later

➢ Storing the input/output data

➢ Variables

15

Variables (cont’d)

➢Data is stored in the main memory

➢Variables

➢ Are the name of locations in the main memory

➢ We use names instead of physical addresses

➢ Specify the coding of the location

➢ What do the “01”s means?

➢ What is the type of data?

16

Variables

➢Variables in the C

 <Qualifier> <Type> <Identifier>;

➢<Qualifier>

➢ Is optional

➢ We will discuss later

➢<Type>

➢ Specifies the coding

➢<Identifier>

➢ Is the name

17

Types: Integers

➢Integer numbers

➢ Different types, different sizes, different ranges

Type Size Unsigned Signed

short 16Bits

int 32Bits

long or
long int

32/64
Bits

long long or
long long int

64 Bits

16[0,2 1]-

32[0,2 1]-

32|64[0,2 1]-

64[0,2 1]-

15 15[2 ,2 1]- -

31 31[2 ,2 1]- -

63 63[2 ,2 1]- -

31|63 32|63[2 ,2 1]- -

18

Types: Float and Double

➢Floating point number

➢ float 32 bits

➢ double 64 bits

➢ long double 96 bits

➢Limited precision

➢ float: 8 digits precision

➢ 1.0 == 1.00000001

➢ double: 16 digits precision

➢ 1.0 == 1.0000000000000001

19

Types: Char

➢Character

➢ Type: char

➢Single letters of the alphabet, punctuation

symbols

➢Should be single quotation

➢ ‘a’, ‘^’, ‘z’, ‘0’, ‘1’, ‘\n’, ‘\’’, ‘\0’

20

Types: Booleans

➢#include <stdbool.h>

➢Logics (Boolean): bool

➢Only two values: false , true

Signed and Unsigned Types

➢ Integers in C and C++ are either signed or

unsigned.

➢ For each signed type there is an equivalent

unsigned type.

Signed Integers

➢ Signed integers are used to represent positive

and negative values.

➢ On a computer using two’s complement

arithmetic, a signed integer ranges from -2n-1

through 2n-1-1.

Signed Integer Representation

Tow’s Complement (ranges from -2n-1 through

2n-1-1).

Unsigned Integers

➢ Unsigned integer values range from zero to a

maximum that depends on the size of the type

➢ This maximum value can be calculated as 2n-1,

where n is the number of bits used to

represent the unsigned type.

Unsigned Integer Representation

Tow’s complement (ranges from 0 through 2n -1)

Integer Ranges

➢ Minimum and maximum values for an

integer type depend on

➢ The type’s representation

➢ Signedness

➢ The number of allocated bits

➢ The C99 standard sets minimum requirements

for these ranges.

Example Integer Ranges

➢ Char in C is a 1-byte integer.

Signed / Unsigned Characters

The type char can be signed or unsigned.

➢ When a signed char with its high bit set is

saved in an integer, the result is a negative

number.

➢ Use unsigned char for buffers, pointers,

and casts when dealing with character data

that may have values greater than 127 (0x7f).

Overflow and Underflow

➢All types have limited number of bits

➢ Limited range of number are supported

➢ Limited precision

➢Overflow

➢ Assign a very big number to a variable that is larger

than the limit of the variable.

➢Underflow

➢ Assign a very small number to a variable that is

smaller than the limit of the variable.

29

Example

Overflow Examples

➢ Example of signed and unsigned integer

overflows:

#include <limits.h>

Underflow Examples

➢ Example of signed and unsigned integer

underflows:

32

Variables: Identifier

➢The name of variables: identifier

➢ Identifier is a string (single word) of

➢ Alphabet

➢ Numbers

➢ “_”

➢But

➢ Cannot start with digits

➢ Cannot be the key-words (reserved words)

➢ Cannot be duplicated

➢ Should not be library function names: printf

33

Variables: Identifier

➢Use readable identifiers:

➢Do not use memorystartaddress

➢ Use memory_start_address

➢Do not use xyz, abc, z, x, t

➢ Use counter, sum, average, result,

parameter, …

➢Do not be lazy

➢ Use meaningful and readable names

34

C reserved words

➢ Cannot be used for identifiers

35

C++ reserved words

➢ Cannot use for identifiers

Variable Identifiers

➢Example of valid

identifiers

• student

• Grade

• sum

• all_students

• average_grade_1

36

Variable Identifiers

➢Example of valid

identifiers

• student

• Grade

• sum

• all_students

• average_grade_1

➢Example of invalid

identifiers

• if

• 32_test

• wrong*

• sds

37

38

Variables: Declaration (اعلان)

➢Reserve memory for variable: declaration

➢ <type> <identifier>;

➢A variable must be declared before use

• char test_char;

• int sample_int;

• long my_long;

• double sum, average, total;

• int id, counter, value;

Variable Type Effect (in complied langs.)

➢Important note: the type of variable is NOT stored

in the main memory

➢ After compiling the program → NO type is associated

to memory locations!!!

➢So, what does do the type?!

➢ It determines the “operations” that work with the

memory location

➢E.g.:

➢ int x, y, z; z = x + y;

➢ float a, b, c; c = a + b;
39

Integer + and =

Performed by ALU

Integer + and =

Performed by ALU

Variable Type Effect (in complied langs.)

➢Important note: the type of variable is NOT stored

in the main memory

➢ After compiling the program → NO type is associated

to memory locations!!!

➢So, what does do the type?!

➢ It determines the “operations” that work with the

memory location

➢E.g.:

➢ int x, y, z; z = x + y;

➢ float a, b, c; c = a + b;
40

Integer + and =

Performed by ALU

Integer + and =

Performed by ALU

Float + and =

Performed by FPU

Float + and =

Performed by FPU

41

Variables: Initial Values

➢What is the initial value of a variable?

➢ In C: we do not know.

➢ In C: it is not 0.

We need to assign a value to each

variable before use it.

42

What We Will Learn

➢What is the C

➢Variables

➢Types

➢Values

➢Casting

➢Constants & Definition

Constants in C

➢Values

➢ Numeric

➢ Integer numbers

➢ Float numbers

➢ Char

➢ Strings

➢Symbolic constant

➢Constant variables

43

44

Values

➢Variables

➢ Save/restore data (value) to/from memory

➢Declaration specifies the type and name

(identifier) of variable

➢Assigning value to the variable: assignment

➢ <identifier> = <value>;

➢ Compute the <value> and save result in memory

location specified by <identifier>

45

Values: Examples

int i, j;

long l;

float f;

double d;

i = 10;

j = 20;

f = 20.0;

l = 218;

d = 19.9;

46

Value Types

➢Where are the values stored?!

 int x = 20;
 x = 30 + 40;

➢ In main memory

➢There is a logical section for these constant values

➢So, we need to specify the type of the value

➢The coding of 01s of the value

➢The type of value is determined from the value

itself

47

Values (literals): Integers

➢Valid integer values

10, -20, +400; //Decimal (base 10) integer literal

0x12A, 0X12A; //Hexadecimal (base 16) integer

literal

017; //Octal (base 8) integer literal

5000L; // long int integer literal

➢Invalid integer values

10.0, -+20, -40 0, 600,000, 5000 L, 019;

Binary-Hex and Hex-Binary: Examples

➢ HEX: base 16

➢ The letters that stand for hexadecimal numbers above 9

can be upper or lower case – both are used.

49

Values (literals): Float and Double

➢Valid numbers:

 0.2; .5; -.67; 20.0; 60e10; 7e-2

 12.5f; // float literal

 12.5L; // long double literal

➢Invalid numbers:

 0. 2; 20. 0; 20 .0; 7 e; 6e; e12

50

Values (literals): Chars

➢Char values

➢ Should be enclosed in single quotation

➢ ‘a’, ‘^’, ‘z’, ‘0’, ‘1’, ‘\n’, ‘\’’, ‘\0’

➢Each character has a code: ASCII code

➢ ‘A’: 65; ‘a’: 97; ‘1’: 49; ‘2’: 50; ‘\0’ : 0

➢Character vs. Integer

➢ ‘1’ != 1 ; ‘2’ != 2

➢ ‘1’ == 49 But 1 == 1

Values (literals): Strings

➢String is a set of characters

➢ Starts and ends with double quotation: "

➢Examples:

"This is a simple string"

"This is a cryptic string #$56*(#"

51

Effect of Value Types

➢The type of values have the same effect of

the type of variables

➢ It determines the “operations” that work on the

values

➢E.g.:

➢ int z; z = 10 + 20;

➢ float c; c = 1.1 + 2.2;

52

Integer + and =

Performed by ALU

Integer + and =

Performed by ALU

Float + and =

Performed by FPU

Float + and =

Performed by FPU

53

Values: Initialization

int i = 20;

int j = 0x20FE, k = 90;

int i, j = 40;

char c1 = 'a', c2 = '0';

bool b1 = true;

float f1 = 50e4;

double d = 50e-8;

54

Values: From memory to memory

int i, j = 20;

i = j; // i = 20

double d = 65536; // d = 65536.0

double b = d; // b = 65536.0

d = b = i = j = 0;

// j = 0, i = 0, b = 0.0, d = 0.0

55

Basic Input Output

➢ To read something: scanf

• Integer: scanf("%d", &int_variable);

• Float: scanf("%f", &float_variable);

• Double: scanf("%lf", &double_variable);

➢ To print (show) something: printf

• Integer: printf("%d", int_variable);

• Float: printf("%f", float_variable);

• Message (string literal): printf("message");

56

What We Will Learn

➢What is the C

➢Variables

➢Types

➢Values

➢Casting

➢Constants & Definition

57

Casting

➢What is the casting?

➢ When the type of variable and value are not the

same

➢ Example: Assigning double value to integer variable

➢It is not a syntax error in C (only warning)

➢ But can cause runtime errors

➢It is useful (in special situations)

➢ But we should be very very careful

58

Implicit casting

➢Implicit (ضمني)

➢We don’t say it

➢But we do it

char f2 = 50e6; /* cast from double to char */

int i = 98.01; /* cast from double to int */

59

Explicit casting

➢Explicit (صريح)

➢We say it

➢And we do it

int i = (int) 98.1; /* Cast from double to int */

char c = (char) 90; /* Cast from int to char */

60

Casting effects

➢Casting from small types to large types
➢ There is not any problem

➢ No loss of data

 int i;

 short s;

 float f;

 double d;

 s = 'A'; // s = 65

 i = 'B'; // i = 66

 f = 4566; // f = 4566.0

 d = 5666; // d = 5666.0

61

Casting effects (cont’d)

➢Casting from large types to small types
➢ Data loss is possible

➢ Depends on the values

 float f = 65536; // 65536.0

 double d = 65536; // 65536.0

 short s = 720; // 720

 char c = (char) 65536; // c = 0

 short s = (short) 65536; // s = 0

 int i = 1.22; // i = 1

 int j = 1e23; // j = ???

62

Casting effects (cont’d)

➢Casting to Boolean

➢ If value is zero → false

➢ If values is not zero → true

bool b2 = 'a', b3 = -9, b4 = 4.5; // true

bool b5 = 0, b6 = false; b7 = '\0'; // false

Truncation Errors

➢ Truncation errors occur when

➢ an integer is converted to a smaller integer.

➢ type and the value of the original integer is outside

the range of the smaller type.

➢ Low-order bits of the original value are

preserved and the high-order bits are lost.

Truncation Error Example

Sign Errors

➢ Can occur when

• converting an unsigned integer to a

signed integer.

• converting a signed integer to an

unsigned integer.

Sign Error Example

67

What We Will Learn

➢What is the C

➢Variables

➢Types

➢Values

➢Casting

➢Constants & Definition

68

Constant Variables!!!

➢Constants

➢ Do not want to change the value

➢ Example: pi = 3.14

➢We can only initialize a constant variable

➢ We MUST initialize the constant variables (why?!)

➢const is a qualifier

 const int STUDENTS = 38;

const long int MAX_GRADE = 20;

int i;

i = MAX_GRADE;

STUDENTS = 39; //ERROR

69

Definitions

➢Another tool to define constants

➢ Definition is not variable

➢We define definition, don’t declare them

➢ Pre-processor replaces them by their values before
compiling

#define STUDENTS 38

int main(void){

 int i;

 i = STUDENTS;

 STUDENTS = 90; //ERROR! What compiler sees: 38 = 90

70

Definitions

#define NAME “Test”

#define AGE (20 / 2)

#define MIN(a, b) (((a)<(b))?(a):(b))

#define MAX(a, b) (((a)>(b))?(a):(b))

#define MYLIB

71

Summary

➢Simple programs in C

➢Two basics

➢ Variables

➢ Types

➢ Values

➢Types

➢Casting

➢ The type mismatch

➢Constant variables & definitions

Reference

➢Reading Assignment: Chapter 2 of “C How to

Program”

72

Questions

➢Which of the following statements about C is FALSE?

 A) C is case-sensitive.

 B) The main function is optional in every program.

 C) Statements must end with a semicolon.

 D) Program execution starts with the main function

➢Answer: B

73

Questions

➢What is the size of an int data type in C on most

systems?

 A) 16 bits B) 32 bits

 C) 64 bits D) Depends on the system

➢Answer: D

➢What is the correct format specifier for reading an

integer value using scanf?

 A) %i B) %d C) %f D) %c

➢Answer: B

74

Questions

➢Which of the following scenarios would likely result in

data loss during casting?

 A) Casting a double to float

 B) Casting a float to int

 C) Casting an int to char

 D) All of the above

➢Answer: D

75

	Slide 1: Lecture 3 C Programming Basics
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Signed and Unsigned Types
	Slide 22: Signed Integers
	Slide 23: Signed Integer Representation
	Slide 24: Unsigned Integers
	Slide 25: Unsigned Integer Representation
	Slide 26: Integer Ranges
	Slide 27: Example Integer Ranges
	Slide 28: Signed / Unsigned Characters
	Slide 29
	Slide 30: Overflow Examples
	Slide 31: Underflow Examples
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Variable Type Effect (in complied langs.)
	Slide 40: Variable Type Effect (in complied langs.)
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Binary-Hex and Hex-Binary: Examples
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Effect of Value Types
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Truncation Errors
	Slide 64: Truncation Error Example
	Slide 65: Sign Errors
	Slide 66: Sign Error Example
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

