Lecture 14
Introduction to C++ and Object-

Oriented Programming

Fundamentals of Computer and Programming

Instructor: Morteza Zakeri, Ph.D. (m-zakeri@live.com)
Spring 2024

Modified Slides from Dr. Brian Gregor

Computer Engineering Department, Amirkabir University of Technology

B 44|

Outline

Very brief history of C++

Definition of object-oriented programming (OOP)
When C++ is a good choice

First program!

Some C++ syntax

Function calls

Create a C++ class

References and Pointers

v Vv Vv VY ¥V VvV Vv Y V¥V

More on object-oriented programming

B 2

Outline

Very brief history of C++

Definition of object-oriented programming
When C++ is a good choice

First program!

Some C++ syntax

Function calls

Create a C++ class

References and Pointers

v VvV Vv Vv VY Vv ¥V V VY

More on object-oriented programming

L0 3

Very brief history of C++

i 1969-1973 2014

LT AT LR The C language was invented
Kristen Nygaard and Ole-Johan by Dennis Ritchie at Bell Labs

Dahl as a simulation language

|

Minor update: C++14 released.

!

!

2011
Major update: C++11 standard
1967 1972 released
Simula 67 developed as the first D. Ritchie and Ken Thompson
object-onented language re-write the Unix Q5 in C T
1989

T

19749
Bjarne Stroustrap began

developing "C with Classes”

1983

——» "Cwith Classes” renamed to ——»

C++

C++ 2.0 standard released.

T

19385
1st commercial C++ compiler,
Cirant, released by AT&T

For details more check out A History of C++: 1979-1991

C++

B

http://www.stroustrup.com/hopl2.pdf

Outline

Very brief history of C++

Definition of object-oriented programming
When C++ is a good choice

First program!

Some C++ syntax

Function calls

Create a C++ class

References and Pointers

v VvV Vv Vv VY Vv ¥V V VY

More on object-oriented programming

B 5

Object-oriented programming (OOP)

» Seeks to define a program in terms of the things (objects) in the
problem

» files, molecules, buildings, cars, people, etc.,
» what they need, and what they can do.

» Data beside operations
» Modeling real-world phenomena's

Objects
class GasMolecule /— (instances of a class) _\

Data:

molecular weight, structure, GasMolecule ch4

common names, etc. GasMolecule co2
Methods: ‘ — .,
* IR(wavenumsStart, wavenumEnd) : spectrum = pseudo-code

return IR emission spectrum in

range > ch4.IR(1000,3500)

\Name = co2. common_namej/

B 6 i

Object-oriented programming

>

>

“Class Car”

OOP defines classes to represent these
things.

public interface

Classes can contain data and methods
(internal/in-class functions).

Classes control access to internal data
and methods.

A public interface is used by external
code when using the class.

This is a highly effective way of
modeling real-world problems inside of
a computer program.

private data and methods

7 i

Characteristics of C++

C++ is object oriented
« With support for many programming styles (procedural, functional, etc.)
C++is compiled.

« A separate program, the compiler, is used to turn C++ source code into a form
directly executed by the CPU.

C++ is strongly typed and unsafe

« Conversions between variable types must be made by the programmer (strong
typing) but can be circumvented when needed (unsafe)

C++is C compatible
« call C libraries directly and C code is nearly 100% valid C++ code.
C++ is capable of very high performance

« The programmer has a very large amount of control over the program
execution

C++ has no automatic memory management
« The programmer is in control of memory usage

B 3 i

Outline

Very brief history of C++

Definition of object-oriented programming
When C++ is a good choice

First program!

Some C++ syntax

Function calls

Create a C++ class

References and Pointers

v VvV Vv Vv VY Vv ¥V V VY

More on object-oriented programming

B 0

Why C++7?

« Despite its many competitors C++ has remained popular
for ~30 years and will continue to be so in the foreseeable

future.

¢ Why?

Complex problems and programs can be effectively implemented

OOP works in the real world!
No other language quite matches C++'s combination of

performance, expressiveness, and ability to handle complex
programs.

10 i

When to choose C++

e Choose C++ when:
* Program performance matters

« Dealing with large amounts of data, multiple CPUs, complex
algorithms, etc.

Programmer productivity is less important

|t Is faster to produce working code in Python, R, Matlab or
other scripting languages!

The programming language itself can help organize your code

 EX. In C++ your objects can closely model elements of your
problem.

Access to libraries
« EX. Nvidia’s CUDA Thrust library for GPUs
Your group uses it already!

L 11 i

Outline

Very brief history of C++

Definition of object-oriented programming
When C++ is a good choice

First C++ program!

Some C++ syntax

Function calls

Create a C++ class

References and Pointers

v VvV Vv Vv VY Vv ¥V V VY

More on object-oriented programming

q%p 12

Hello, World! explained

maincpp X

Finclude <iostream>
nsing namespace std: The main routine — the
it main() start of every C++

<q-----T&ﬂ*-._______-~.[3rCKJrEH11!
cont << "Hello wo —s endl; .
return 0; It returns an Integer

value to the operating

|’
\ system and (in this
case) takes no
The return statement returns an integer value to arguments: main ()
the operating system after completion.

0 means “no error’.
C++ programs must return an integer value.

L 13 i

L T ¥ O S N Y Wy Y i L Y L Y B

[

Hello, World! explained

loads a header file containing

main.cpp function and class definitions

1 Finclude <iostreams

2

: using namespace std; * Loads a namespace called std.
4

: o \ « Namespaces are used to
6 { separate sections of code for
T cont << "Hello world!"™ << endl:; -

. etoem o programmer convenience.

2 ; « To save typing we’ll always use
10 H this line in this tutorial.

cout is the object that writes to the stdout device, i.e., the console window.
It is part of the C++ standard library.

Without the “using namespace std;” line this would have been called as
std::cout. It is defined in the iostream header file.

<< is the C++ insertion operator. It is used to pass characters from the right to
the object on the left.

endl is the C++ newline character.

14 [}

C++ Reserved Keywords

alignas
alignof
and

and eq
asm auto
bitand
bitor
bool
break
case
catch
char
char8 t
charlé t
char32 t
class
co_await
co_return
co_yield
compl
concept
const
consteval

constexpr
constinit
const cast
continue
decltype
default
delete

do

double
dynamic cast
else

enum
explicit
export
extern
false
float for
friend
goto

if

inline
int long

mutable
namespace
new
noexcept
not not eq
nullptr
operator or
or eq
private
protected
public
register
reinterpret cast
requires
return
short
signed
sizeof
static
static_assert
static_cast
struct

switch template
this
thread local
throw

true try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar t
while xor
Xor_eq
final®
import®
module”
override®

* Note: context sensitive

B

Behind the Scenes: The Compilation Process

header files
iostream.h
my_headerh

main.cp

C++ library files
system library files

p

linker

—

‘ CObject code file

C++ preprocessor —

* Expanded source code file
* not normally visible
* g++-Eto see output

main.o

S C++ compiler

m

assembler

.{—

l

* Assembler code file
* not normally visible
* g++-510 see output

-....______,_..,--""""_'_"""""-

Executable

main

g++ -0 main main.cpp

16

]

Header Files

C++ (along with C) uses header
files as to hold definitions for the
compiler to use while compiling.

A source file (file.cpp) contains
the code that is compiled into an
object file (file.o).

The header (file.n) is used to tell
the compiler what to expect when
it assembles the program in the
linking stage from the object files.

Source files and header files can
refer to any number of other
header files.

C++ language headers aren'’t referred to with
the .h suffix. <iostream> provides definitions
for I/O functions, including the cout function.

!

#include <iostream>
using namespace std;
int main () {
string hello = "Hello";
string world = "world!";
string msg = hello + " " + world;
cout << msg << endl;
msg[0] = 'h';
cout << msg << endl;
return O;

17

Slight change

Let’s put the message into some
variables of type string and print some
numbers.

Things to note:

« Strings can be concatenated with a +
operator.

* No messing with null terminators or
strcat() as in C

Some string notes:

» Access a string character by brackets

or function: _——

« msg[0] = “H” or msg.at(0) 2> “H”
« C++ strings are mutable — they

can be changed in place.

#include <iostream>
using namespace std;

int main () {
string hello = "Hello";
string world = "world!";
string msg = hello + " " + world;
cout << msg << endl;
msg[0] 'h';
cout << msg << endl;
return O;

B

18

A first C++ class: string

e string is not a basic type
(more on those later), it is a

class. #include <iostream>
* string hello creates an using namespace std;
Instance of a string called . .
B " int main () {
hello”. string hello = "Hello";
_ _ string world = "world!";
* hello is an object. string msg = hello + " " + world;
cout << msg << endl;
- Remember that a class msg[0] = "h';
- cout << msg << endl;
defines some data and a set ,
) return O;
of functions (methods) that }

operate on that data.

L 19 i

A first C++ class: string

« Update the code as you see
here.

« After the last character is
entered, IDE will display
some info about the string
class.

 |If you click or type something
else just delete and re-type
the last character.

« Citrl-space will force the list
to appear.

#include <iostream>
using namespace std;

int main()

{

N

}

"Hello";
"world!";
hello
<< endl;

string hello
string world
string msg =
cout << msg
msg[0] = 'h';
cout << msg << endl;

msg

return 0;

+ " " 4+ world ;

4

B

20

A first C++ class: string

0w =] o Nl L L)

I R B e e N = =
L R o T S y S

Hi

$include <iostream>

nsing namespace std;

int main{)
' Shows this

string hello = "Hello": .
string world = "world!": funCtlon
string msg = hello + " " £ world ; 1
cout i:i E&sg << endl; List of String (maln) and the
msg[0] = 'h'; List of other methods type Of mSg
count << msg << endl; String Objects (Strlng
msg I \

@ hello: string A

@ world: string 50

(@) (__gthrw pthread cond signal, pthread cond signal, pthread cond signal) (): J gthrw pthread cond init, pthread cond...

(@) [gthrw pthread key create, pthread key create, pthread key create) (): (_WEthrw pthread cond timedwait, pthread co...

(@) (__gthrw pthread mutex init, pthread mutex init, pthread mutex init) (): (_ gthrw pthread mutex timedlock, pthread m... Open declaration

(@) (_ gthrw pthread mutex lock, pthread mutex lock, pthread mutex lock) (): (_ gthrw pthread cancel, pthread cancel, pt... Close Top

(@) (__gthrw pthread self, pthread self, pthread self) (): (_ gthrw pthread join, pthread join, pthread join) (_ gthrw pt...

(@) (__gthrw pthread setspecific, pthread setspecific, pthread setspecific) (): (_ gthrw pthread once, pthread once, pth...

(8 * pthread key dest(): void

(@) abort(): woid

(#) address(): const_pointer v

Next: let’s find the size() method without scrolling for it.

o

21

A first C++ class: string

« Start typing “msg.size()” until it appears in the list.

mainco [Bese a5 « Once it’s highlighted (or you scroll to it) press the Tab key to auto-

1 $include <iostream> o
> enter It.
3 using namespace std;
4
2 int main()
6 [t . . 7 H ”
, string nello = "reilon; * On the right you can click “Open declaration” to see how the C++
i string world = "world!"™; . i
a string msg = hello + " " + world ; d b b -
: compiler defines size(). This will open basic_string.h, a built-in
11 msg[0] = ; 5
12 cout << msg << endl: flle-
2]
14 rr.sg.sizi
e # SIGTERM " std:: cxx11:basic string
Az T¢ § SIC ACK
17 ' 5@ sig atomic t public size type size() const
1 . # SIG_BLOC:{ - (function)
SIG:DFT_
SIG_ERR Open declaration
SIG GET Open implementation
SIG IGN Close Top
SIG_SETMASK
SIG SGE
SIG_UNBLOCK

A first C++ class: string

 Tweak the code to print the
number of characters in the
string, build, and run it.

* From the point of view of main(),
the msg object has hidden away
its means of tracking and
retrieving the number of
characters stored.

* Note: while the string class has
a huge number of methods your
typical C++ class has far fewer!

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello" ;

string world = "world!" ;

string msg = hello + " " + world ;
cout << msg << endl ;

msg[0] = 'h';

cout << msg << endl ;

cout << msg.size() << endl ;

returgka>\\\\\\\

Note that cout prints integers
without any modification!

B

23

]

Outline

Very brief history of C++

Definition of object-oriented programming
When C++ is a good choice

First C++ program!

Some C++ syntax

Function calls

Create a C++ class

References and Pointers

v VvV Vv Vv VY Vv ¥V V VY

More on object-oriented programming

B 24

Basic Syntax

« C++ syntax is very similar to C, Java, or C#. Here's a few things up front and
we’ll cover more as we go along.

* Curly braces are used to denote a code block (like the main() function):

{ .. some code .. }

* Statements end with a semicolon:

int a ;
a=1+ 3 ;

« Comments are marked for a single line with a // or for multilines with a pair of /*
and */ :

void my function()
// this is a comment. {

/* everything in here

int a ;
is a comment */ a=1 :
« Variables can be declared at any time in a code block: int b;

L 25 i

Basic Syntax

* Functions are sections of code that are called from other code.

* Functions always have a return argument type, a function name, and then a

list of arguments separated by commas:

* A void type means the function does not return a value.

// No arguments? Still need ():
void my function() {
/* do something. ..
but a void value means the
return statement can be
skipped. */
}

* Variables are declared with a type and a name:

int add(int x, int y) {
int z = x +y ;
return z ;

// Specify the type

int x = 100;

float y;

vector<string> vec ;

// Sometimes types can be
inferred

auto z = x;

B 26

]

Basic Syntax

A sampling of arithmetic operators:

* Arithmetic: + - * /% ++ --
 Logical: && (AND) || (OR) ! (NOT)
« Comparison: == > < >= <= I=

Sometimes these can have special meanings beyond arithmetic, for
example the “+” is used to concatenate strings.

What happens when a syntax error is made?
 The compiler will complain and refuse to compile the file.

« The error message usually directs you to the error but sometimes
the error occurs before the compiler discovers syntax errors so
you hunt a little bit.

27 i

Built-in (aka primitive or intrinsic) Types

« “primitive” or “intrinsic” means these types are not objects
» Here are the most commonly used types.

» Note: The exact bit ranges here are platform and compiler dependent!
« Typical usage with PCs, Macs, Linux, etc. use these values
» Variations from this table are found in specialized applications like embedded system

processors.
Name Name Value Name Value
char unsigned char 8-bit integer float 32-bit floating point
short unsigned short 16-bit integer double 64-bit floating point
int unsigned int 32-bit integer long long 128-bit integer
long unsigned long | 64-bit integer long double 128-hit floating point
bool true or false

http://www.cplusplus.com/doc/tutorial/variables

B

28

]

http://www.cplusplus.com/doc/tutorial/variables/
http://www.cplusplus.com/doc/tutorial/variables

Need to be sure of integer sizes?

* In the same spirit as using integer(kind=8) type notation in Fortran, there are
type definitions that exactly specify exactly the bits used. These were added
in C++11.

« These can be useful if you are planning to port code across CPU
architectures (ex. Intel 64-bit CPUs to a 32-bit ARM on an embedded board)
or when doing particular types of integer math.

* For a full list and description see:
* http://www.cplusplus.com/reference/cstdint/

#include <cstdint>

Name Name Value

int8_t uint8 t 8-bit integer
intl6 t uintl6 t 16-bit integer
int32_t uint32_t 32-bit integer
int64 t uint64 t 64-bit integer

L 29 i

http://www.cplusplus.com/reference/cstdint/

Reference and Pointer Variables

The object hello occupies
some computer memory.

string hello = "Hello";

string *hello ptr

string &hello ref

&hello; <

hello;

“~.___..

The asterisk indicates that hello_ptr is a pointer to
a string. hello_ptr variable is assigned the
memory address of object hello which s
accessed with the “&” syntax.

The & here indicates that hello_ref is a reference to a string. The
hello_ref variable is assigned the memory address of object
hello automatically.

« Variable and object values are stored in particular locations in the computer's memory.

» Reference and pointer variables store the memory location of other variables.

* Pointers are found in C. References are a C++ variation that makes pointers easier and

safer to use.

B

]

Type Casting

« C++is strongly typed. It will auto-convert a variable of one type to
another in a limited fashion: if it will not change the value.

short x =1 ;
inty = x ; // OK
short z =y ; // NO!

« Conversions that don’t change value:
» increasing precision (float - double) or
* integer - floating point of at least the same precision.

« C++ allows for C-style type casting with the syntax:

* (new type) expression

double x = 1.0 ;
int y = (int) x ;
float z = (float) (x / y) ;

L0 31

Type Casting

static_cast<new type>(expression)

 This is exactly equivalent to the C style cast.

 This identifies a cast at compile time.

« This will allow casts that reduce precision (ex. double - float)

« ~99% of all your casts in C++ will be of this type.

double d = 1234.56 ;

float £ = static _cast<float>(d)
// same as

float g = (float) 4 ;

L0 32

Type Casting

dynamic cast<new type>(expression)

« Special version where type casting is performed at runtime, only
works on reference or pointer type variables.

« Usually handled automatically by the compiler where needed, rarely
done by the programmer.

Type Casting cont'd

const cast<new type>(expression)

Variables labeled as const can’t have their value changed.

const _cast lets the programmer remove or add const to
reference or pointer type variables.

If you need to do this, you probably want to re-think your code.

f

“unsafe”: the compiler will not protect you here!

The programmer must make sure everything is correct!

B

34 @

Type Casting cont'd

reinterpret cast<new type>(expression)

Takes the bits in the expression and re-uses them unconverted as
a new type.

Also only works on reference or pointer type variables.

Sometimes useful when reading in binary files and extracting
parameters.

35 i

Outline

Very brief history of C++

Definition of object-oriented programming
When C++ is a good choice

First C++ program!

Some C++ syntax

Function calls

Create a C++ class

References and Pointers

v VvV Vv Vv VY Vv ¥V V VY

More on object-oriented programming

Q%o 36

Functions

4 function calls are listed. The function arguments

The return type L and W are sent as

is float. / type float.
The 1st and 2" functions are — ¥ 4
identica| in their behaVior. float RectangleAreal (float L, float W) {
return L*W ;
« The values of L and W are sent to the |} ¥~ Product is computed
function, multiplied, and the product is
returned.
float RectangleArea?2 (const float L, const float W) {
RectangleArea2 uses const return L*W ;
arguments :

* The compiler will not let you modify

: ; . float RectangleArea3 (const float& L, const float& W
their values in the function. J () A

return L*W ;

« Try itt Uncomment the line and see | !
what happens when you recompile.

void RectangleArea4 (const float& L, const float& W,
float& area) {

The 39 and 4% versions pass the area— LEW :
arguments by reference with an |’ t
added &

L 37 i

Pass by Value

main ()

float L float L

float W float W

« C++ defaults to pass by value behavior when calling a function.
« The function arguments are copied when used in the function.

« Changing the value of L or W in the RectangleAreal function does not effect
their original values in the main() function

 When passing objects as function arguments it is important to be aware that
potentially large data structures are automatically copied!

L 38 i

Pass by Reference

reference

float L float L
reference

float W float W

Pass by reference behavior is triggered when the & character is used to modify the
type of the argument.

This is the type of behavior you see in Fortran, Matlab, Python, and others.

Pass by reference function arguments are NOT copied. Instead the compiler sends
a pointer to the function that references the memory location of the original variable.
The syntax of using the argument in the function does not change.

Pass by reference arguments almost always act just like a pass by value argument
when writing code EXCEPT that changing their value changes the value of the
original variable!!

The const modifier can be used to prevent changes to the original variable in
main().

L 39 i

Pass by Reference

void does not return a value.

.

void RectangleArea4 (const floaté& L, const float& W, float& area) {
area = L*W ;

}

« In RectangleArea4 the pass by reference behavior iIs
used as a way to return the result without the function
returning a value.

 The value of the area argument is modified in the main ()
routine by the function.

« This can be a useful way for a function to return multiple
values in the calling routine.

L 0 i

Passing objects to Functions

* |In C++ arguments to functions can be objects ...

« which can contain any quantity of data you've
defined!

« Example: Consider a string variable containing 1
million characters (approx. 1 MB of RAM).

« Pass by value requires a copy — 1 MB.
« Pass by reference requires 8 bytes!

a1 i

B

Passing objects to Functions

« Pass by value could potentially mean the accidental
copying of large amounts of memory which can greatly
Impact program memory usage and performance.

« When passing by reference, use the const modifier
whenever appropriate to protect yourself from coding
errors.

* Generally speaking — use const anytime you don’t want to
modify function arguments in a function.

42 [}

B

Function overloading

Briefly: The same function can be implemented multiple times with
different arguments.

This allows for special cases to be handled, or specialized behavior for
different types.

Multiple constructors in a class are an example of function overloading.

float sum(float a, float b) {
return a + b;

}

int sum(int a, int b) {
return a + b;

}

L 43 i

Outline

Very brief history of C++

Definition of object-oriented programming
When C++ is a good choice

First C++ program!

Some C++ syntax

Function calls

Create a C++ class

References and Pointers

v VvV Vv Vv VY Vv ¥V V VY

More on object-oriented programming

q%p 44

A first C++ class

Start a new project. Call it
BasicRectangle.

In the main.cpp, we'll define a
class called BasicRectangle

First, just the basics fields:
* length and width.

Enter the code on the right before
the main() function In the
main.cpp file (copy and paste is
fine) and Create a
BasicRectangle object In
main.cpp:

#include <iostream>
using namespace std;

class BasicRectangle
{
public:

// width

float W ;

// length

float L ;

};

int main()

{
cout << "Hello world!" << endl;

BasicRectangle rectangle ;
rectangle.W 1.0 ;
rectangle.L 2.0 ;

return 0; ‘

B 45

Basic C++ Class Syntax

Curly braces at the
beginning and end followed
by a semi-colon

public keyword indicates
everything following the
keyword is accessible by
any other code outside of
this class.

The class can now be used to
declare an object named rectangle.

The width and length of the
rectangle can be set.

class
keyword

/

Name of class

class BasicRectangle

{
public:
Internal variables are called

// width ;
float W ; members
// length

float L ;
};

BasicRectangle rectangle ;
rectangle.W = 1.0 ;
rectangle.L = 2.0 ;

B

46

Accessing data In the class

« Public members in an object can | ;¢ main ()
be accessed (for reading or writing) | ¢

with the syntax: cout << "Hello world!" << endl;
 object.member » BasicRectangle rectangle ;
rectangle. W = 1.0 ;
rectangle.L = 2.0 ;

- Next let's add a function inside the return 0;
object (called a method) to

calculate the area.

L 47 i

Accessing methods in the class

method Area does not take any
arguments, it just returns the
calculation based on the object
members.

Methods are accessed just like
members:

Z

object.method(arguments)

class BasicRectangle

{

public:

};

// width ;

float W ;

// length

float L ;

float Area() {
return W * L ;

}

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;
rectangle.W = 21.0 ;
rectangle.L = 2.0 ;

cout << rectangle.Area() << endl ;

return 0;

B

]

Basic C++ Class Summary

C++ classes are defined with the keyword class and must be
enclosed in a pair of curly braces plus a semi-colon:

class ClassName { ... } ;

« The public keyword is used to mark members (variables) and

methods (functions) as accessible to code outside the class.

« The combination of data and the functions that operate on it is the

OOQOP concept of encapsulation.

4 i

Encapsulation in Action

In C — calculate the area of a few shapes...

/* assume radius and width square are assigned
already ; */

float al = AreaOfCircle(radius) ; // ok

float a2 = AreaOfSquare (width square) ; // ok

float a3 = AreaOfCircle (width square) ; // !! OOPS

In C++ with Circle and Rectangle classes...not possible to
miscalculate.

Circle cl1 ;
Rectangle rl ;
// ... assign radius and width

float al = cl.Area() ;
float a2 = rl.Area() ;

50

Now for a “real” class

« Defining a class in the main.cpp file is not typical.

« Two parts to a C++ class:

 Header file (my_class.h)

« Contains the interface (definition) of the class — members,
methods, etc.

« The interface is used by the compiler for type checking, enforcing
access to private or protected data, and so on.

« Also useful for programmers when using a class — no need to
read the source code, just rely on the interface.

« Source file (my_class.cc)
« Compiled by the compiler.
« Contains implementation of methods, initialization of members.
* In some circumstances there is no source file to go with a header file.

L 51 i

Now for a “real” class

rectangle.h

rectangle.cpp

#ifndef RECTANGLE H
#define RECTANGLE H

class Rectangle

{
public:
Rectangle () ;
virtual ~Rectangle () ;

protected:

private:

};

#endif // RECTANGLE H

#include “rectangle.h"

Rectangle: :Rectangle ()

{
//ctor

}

Rectangle: : ~Rectangle ()

{
//dtor

}

q%p 52

Modify rectangle.h

* As in the sample BasicRectangle, #ifndef RECTANGLE H
add storage for the length and width | #define RECTANGLE_H
to the header file.

class Rectangle

« Add a declaration for the Area (
method. public:
Rectangle () ;
« The protected keyword will be virtual ~Rectangle();
discussed later. float m length ;
] float m width ;
« The private keyword declares
anything following it (members, float Area()
methods) to be visible only to code ~_ protected:
In this class. . ,
private:

};
#endif // RECTANGLE H

L 53 i

rectangle.cpp

* The syntax:

class: :method

* tells the compiler that this
IS the code for the Area()
method declared In
rectangle.h

« Now take a few minutes to
fill in the code for Area().

 Hint —look at the code used Iin
BasicRectangle...

#include "rectangle.h"

Rectangle: :Rectangle ()

{
//ctor

}

Rectangle: : ~Rectangle ()

{
//dtor

}

float Rectangle: :Area()
{

}

L0 54

Last Step

1.
2
3.
4
5

Go to the main.cpp file

. Add an include statement for “rectangle.h”

Create a Rectangle object in main ()

. Add a length and width

. Print out the area using cout.
« Hint: just like the BasicRectangle example...

B

55

Solution

* You should have come up with something like this:

#include <iostream>
using namespace std;
#include "rectangle.h"
int main ()

{
Rectangle rT ;

rT.m width = 1.0 ;
rT.m length = 2.0 ;
cout << rT.Area() << endl ;

return 0;

B 56

Outline

Very brief history of C++

Definition of object-oriented programming
When C++ is a good choice

First C++ program!

Some C++ syntax

Function calls

Create a C++ class

References and Pointers

v VvV Vv Vv VY Vv ¥V V VY

More on object-oriented programming

B 57

References and Pointers

« Part 1 introduced the concept of passing by reference when calling
functions.

« Selected by using the & character in function argument types:
int add (int &a, int b)

 References hold a memory address of a value.

int add (int &a, int b) > ahasthe value of a memory
address, b has an integer value.

« Used like regular variables and C++ automatically fills in the value of the
reference when needed:

int ¢ = a + b ; > ‘“retrieve the value of a and add it to the value
of b”

L 58 i

References and Pointers

« From C there is another way to deal with the memory address of a variable:
via pointer types.

« Similar syntax in functions except that the & is replaced with a *:
int add (int *a, int b)

« To get a value from a pointer requires a manual dereferencing by the
programmer:

int ¢ = *a + b ; - “retrieve the value of a and add it to the value of b”

References and Pointers

Declaration

Set memory address to
something in memory

Fetch value of thing in
memory

Can refer/point to nothing
(null value)?

Can change address that it
refers to/points at?

Object member/method
syntax

int &ref ;

inta=0:
int &ref = a;

cout << ref ;

No

No.
inta=0;
intb=1;
int &ref = a ;
ref=Db;
/I value of a is now 1!

MyClass obj ;
MyClass &ref = obj ;

ref.member ;
ref.method();

int *ptr ;

inta=0;
int *ptr = &a ;

cout << *ptr ;

Yes

Yes
inta=0;
intb=1;
int *ptr = &a ;
ptr = &b ;
/[ptr now points at b

MyClass obj ;
MyClass *ptr = obj ;
ptr->member ;
ptr->method();

/Il OR
(*ptr).member ;
(*ptr).method() ;

B

60

References and Pointers

Declaration int &ref ; int *ptr ;
Set memory address to inta=0; inta=0; int a =07
something in memory int &ref = a ; Int*ptr = &a ; int sref = a ;
Fetch value of thing in cout <<ref; cout << *ptr; int *ptr = sa ;
memory T
Can refer/point to nothing No Yes : :

int a: 4 bytes in memory at
(null value)? address 0xAABBFF with a
Can change address that it No. Yes value of 0.
refers to/points at? inta=0; inta=0;

& intb=1; intb=1; p ﬁ—\
int &ref = a ; int *ptr =&a; Value stored in ref:
ref=Db; ' ptr = &b ; | \OXAABBFF |
/l value of a is now 1! Il ptr now points at b

Object member/method MyClass obj ; MyClass obj ; (Value oo A)
syntax MyClass &ref = obj ; MyClass *ptr = obj ; 0xAABBFF B
ptr->member : ~ g
ref.member ; ptr->method();
ref.method(); // OR

(*ptr).member ;
(*ptr).method() ;

L 61 i

When to use a reference or a pointer

« Both references and pointers can be used to refer to objects in
memory in methods, functions, loops, etc.

« Avoids copying due to default call-by-value C++ behavior
« Could lead to memory/performance problems.
« Or cause issues with open files, databases, etc.

* |If you need to:

« Hold a null value (i.e., point at nothing), use a pointer.
« Re-assign the memory address stored, use a pointer.

 Otherwise, use a reference.
» References are much easier to use!

* No need to check if a reference has a null value ... since they can’t hold one.

L 62 i

When to use a reference or a pointer

« Both references and pointers can be used to refer to objects in memory
In methods, functions, loops, etc.

« Avoids copying due to default call-by-value C++ behavior
« Could lead to memory/performance problems.
« Or cause issues with open files, databases, etc.

// Pointer to a null wvalue
int *a = NULL ; // C-style
int *b = nullptr ; // C++1l1 style.

// Reference to a null value
// won't compile.
int &c = nullptr ;

Read more: https://Iwww.qgeeksforgeeks.org/pointers-vs-references-cpp/

L 63 i

https://www.geeksforgeeks.org/pointers-vs-references-cpp/

Null Value Checking

// Pointer version
void add(const int *a, const int b, int *c)
{
if (a && c) { // check for null pointer
*¢c = *a + b ;
}
}

// a && ¢ = this means if a AND c are not
// null

// Reference version
void add(const int &a, const
int b, int &c)
{
c=a+b;
}

« A null value means the pointer is not currently pointing at anything.
« It's a good idea to check before accessing the value they point at.

« References cannot be null, so the code on the right does not need

checking.

L0 64

]

Outline

Very brief history of C++

Definition of object-oriented programming
When C++ is a good choice

First C++ program!

Some C++ syntax

Function calls

Create a C++ class

References and Pointers

v VvV Vv Vv VY Vv ¥V V VY

More on object-oriented programming

B 65

The formal concepts in OOP

* Object-oriented programming (OOP):

» Defines classes to represent data and logic in
a program. Classes can contain members
(data) and methods (internal functions).

Polymorphism

+ Creates instances of classes, aka objects, and _
builds the programs out of their interactions. Encapsulation

 The core concepts in addition to classes
and objects are:

* Encapsulation

OOP

* Inheritance
* Polymorphism
» Abstraction Abstraction

OOP Core Concepts

Encapsulation

As mentioned while building the C++
class in the last session.

Bundles related data and functions into a
class

Inheritance

Builds a relationship between classes to
share class members and methods

Abstraction

The hiding of members, methods, and
iImplementation details inside of a
class.

Polymorphism

The application of the same code to
multiple data types

There are 3 kinds, all of which are
supported in C++.

However only 1 is actually called
polymorphism in C++ jargon (!)

C++ Classes

class, IDE
methods

« In the
generated
automatically.

Rectangle
two

* Rectangle() is a constructor. This is
a method that is called when an
object is instantiated for this class.

« Multiple constructors per class are
allowed

« ~Rectangle() is a destructor. This is
called when an object is removed
from memory.

« Only one destructor per class is
allowed!

« (ignore the virtual keyword for now)

#ifndef RECTANGLE H
#define RECTANGLE H

class Rectangle

{
public:

—p Rectangle() ;

—

virtual ~Rectangle() ;

float m_length ;
float m width ;

float Area() ;
protected:

private:
};
#endif // RECTANGLE H

B

68

Encapsulation

« Bundling the data and area calculation for a rectangle into
a single class is and example of the concept of
encapsulation.

#ifndef RECTANGLE H
#define RECTANGLE H
class Rectangle
{
public:
Rectangle() ;
virtual ~Rectangle() ;

float m length ;
float m width ;

float Area() ;
protected:

private:
}i
#endif // RECTANGLE H

L 69 i

Construction and Destruction

« The constructor is called when
an object is created.

« This is used to initialize an
object:
Load values into member variables
Open files

Connect to hardware, databases,
networks, etc.

Construction and Destruction

« The constructor is called when
an object is created.

« This is used to initialize an
object:
« Load values into member variables
* Open files

e Connect to hardware, databases,
networks, etc.

« The destructor is called when
an object goes out of scope.

« Example:

Object cl1 is created when the
program reaches the first line of the
function, and destroyed when the
program leaves the function.

void function () {
ClassOne cl ;

}

When an object is instantiated...

The rT object is created in memory.

When it is created its constructor is called to
do any necessary initialization.

 Here the constructor is empty so nothing is
done.

The constructor can take any number of
arguments like any other function but it cannot
return any values.

« Essentially the return value is the object itself!

What if there are multiple constructors?

* The compiler chooses the correct one based on
the arguments given.

#include "rectangle.h"

int main|()

{
Rectangle rT ;
rT.m width = 1.0 ;

A 4

#include "rectangle.h"

Rectangle: :Rectangle()

{
//ctor

}

Note the constructor has
no return type!

B 72

]

A second constructor

« Two styles of constructor. The right code is the C++11 member initialization list style. At the
left is the old way. C++11 is preferred.

« With the old way the empty constructor is called automatically even though it does nothing
— it still adds a function call.

« Same rectangle.h for both styles.

rectangle.cpp rectangle.cpp

#include "rectangle.h" #include "rectangle.h"“
/* OK to do this */
/* Better to do this */
Rectangle: :Rectangle (float width, float length) { OR Rectangle: :Rectangle (float width, float length):
m _width = width ; m_width (width) ,m_length(length) {
m_length = length ;

} }

rectangle.h
class Rectangle 9

{

public:
Rectangle() ;

Rectangle (float width, float length)
/* etc */

.
4

};

L 73 i

Member Initialization Lists

Syntax:
v Colon goes here
] MyClass (int A, OtherClass &B, float C):

Members a35|gne_d > m A(A),
and separated with- m B (B),
commas. Note: m _C(C) {
order doesn’t matter. /* other code can go

here *//’

}

/

Additional code can
be added in the code
block.

q%p 74

and now use both constructors

Both constructors are now
used.

The new constructor
Initializes the values when
the object is created.

Constructors are used to:
 Initialize members
* Open files
« Connect to databases
« Etc.

#include <iostream>
using namespace std;
#include "rectangle.h"
int main () {

Rectangle rT ;

rT.m width = 1.0 ;

rT.m length = 2.0 ;

cout << rT.Area() << endl ;

Rectangle rT 2(2.0,2.0)
cout << rT 2.Area() << endl ;

return 0;

75

]

Default values

C++11 added the ability to define
default values in headers in an
intuitive way.

Pre-C++11 default values would have
been coded into constructors.

If members with default values get
their value set in constructor than the
default value is ignored.

* I.e., no “double setting” of the value.

#ifndef RECTANGLE H
#define RECTANGLE H

class Rectangle
{
public:

Rectangle () ;
virtual ~Rectangle() ;
// could do:
float m length = 0.0 ;
float m width = 0.0 ;

float Area() ;
protected:

private:
};
#endif // RECTANGLE H

76

Default constructors and destructors

The two methods created by IDE
automatically are explicit versions of the
default C++ constructors and destructors.

Every class has them — if you don’t define
them then empty ones that do nothing will
be created for you by the compiler.

« If you really don't want the default
constructor you can delete it with the delete
keyword.

« Also in the header file you can use the
default keyword if you like to be clear that
you are using the default.

class Foo {

};

public:
Foo() = delete ;
// Another constructor
// must be defined!
Foo(int x) ;

class Bar {

};

public:
Bar() = default ;

77

Custom constructors and destructors

 You must define your own constructor when you want to initialize an
object with arguments.

« A custom destructor is always needed when internal members in the class
need special handling.

« Examples: manually allocated memory, open files, hardware drivers, database
or network connections, custom data structures, etc.

Destructors

« Destructors are called when an

object is destroyed. This class just has 2 floats as members which are

automatically removed from memory by the

compiler.
« Destructors have no return type. /
Rectangle: : ~Rectangle()
« There is only one destructor {
//dtor
allowed per class. y

* Objects are destroyed when they
go out of scope.

 Destructors are never called
explicitly by the programmer. Calls ~House() destructor
to destructors are inserted
automatically by the compiler.

L 79 i

Destructors

 Example:

class Example {
public:
Example () = delete ;
Example (int count) ;

virtual ~Example()

// A pointer to some
memory

// that will be allocated.
nullptr ;

float *wvalues =

};

Example: :Example (int count) {

"count"

}

Example:

is not

// Allocate memory to store

// floats.

values = new float[count];

:~Example () {

// The destructor must free this

// memory. Only do so if values
// null.

if (values) {
delete[] wvalues ;

}

B

80

]

Scope

e Scope is the region where a variable is valid.
« Constructors are called when an object is created.

« Destructors are only ever called implicitly.

int main() { // Start of a code block
// in main function scope
float x ; // No constructors for built-in types
ClassOne cl ; // cl constructor ClassOne() is called.
if (1){ // Start of an inner code block
// scope of c2 is this inner code block
ClassOne c2 ; //c2 constructor ClassOne() is called.
} // c2 destructor ~ClassOne() is called.
ClassOne c¢3 ; // c3 constructor ClassOne() is called.
} // leaving program, call destructors for c3 and cl ~ClassOne ()
// variable x: no destructor for built-in type

Reference

» Reading Assignment: Chapters 1 and 2 of
“C++ How to Program”

» See also:
» https://cplusplus.com/

» https://www.w3schools.com/cpp/

82

B

https://cplusplus.com/
https://www.w3schools.com/cpp/

