
Introduction to C++ and Object-
Oriented Programming

Fundamentals of Computer and Programming

Instructor: Morteza Zakeri, Ph.D. (m-zakeri@live.com)

Spring 2024

Modified Slides from Dr. Brian Gregor

Computer Engineering Department, Amirkabir University of Technology

Lecture 14

Outline

➢ Very brief history of C++

➢ Definition of object-oriented programming (OOP)

➢ When C++ is a good choice

➢ First program!

➢ Some C++ syntax

➢ Function calls

➢ Create a C++ class

➢ References and Pointers

➢ More on object-oriented programming

2

Outline

➢ Very brief history of C++

➢ Definition of object-oriented programming

➢ When C++ is a good choice

➢ First program!

➢ Some C++ syntax

➢ Function calls

➢ Create a C++ class

➢ References and Pointers

➢ More on object-oriented programming

3

Very brief history of C++

For details more check out A History of C++: 1979−1991

C

C++

4

http://www.stroustrup.com/hopl2.pdf

Outline

➢ Very brief history of C++

➢ Definition of object-oriented programming

➢ When C++ is a good choice

➢ First program!

➢ Some C++ syntax

➢ Function calls

➢ Create a C++ class

➢ References and Pointers

➢ More on object-oriented programming

5

Object-oriented programming (OOP)

➢ Seeks to define a program in terms of the things (objects) in the

problem

➢ files, molecules, buildings, cars, people, etc.,

➢ what they need, and what they can do.

➢ Data beside operations

➢ Modeling real-world phenomena's

• Data:

• molecular weight, structure,

common names, etc.

• Methods:

• IR(wavenumStart, wavenumEnd) :

return IR emission spectrum in

range

class GasMolecule

GasMolecule ch4

GasMolecule co2

spectrum =

ch4.IR(1000,3500)

Name = co2.common_name

Objects

(instances of a class)

“pseudo-code”

6

Object-oriented programming

➢ OOP defines classes to represent these

things.

➢ Classes can contain data and methods

(internal/in-class functions).

➢ Classes control access to internal data

and methods.

➢ A public interface is used by external

code when using the class.

➢ This is a highly effective way of

modeling real-world problems inside of

a computer program.

public interface

private data and methods

“Class Car”

7

Characteristics of C++

• C++ is object oriented

• With support for many programming styles (procedural, functional, etc.)

• C++ is compiled.

• A separate program, the compiler, is used to turn C++ source code into a form

directly executed by the CPU.

• C++ is strongly typed and unsafe

• Conversions between variable types must be made by the programmer (strong

typing) but can be circumvented when needed (unsafe)

• C++ is C compatible

• call C libraries directly and C code is nearly 100% valid C++ code.

• C++ is capable of very high performance

• The programmer has a very large amount of control over the program

execution

• C++ has no automatic memory management

• The programmer is in control of memory usage

8

Outline

➢ Very brief history of C++

➢ Definition of object-oriented programming

➢ When C++ is a good choice

➢ First program!

➢ Some C++ syntax

➢ Function calls

➢ Create a C++ class

➢ References and Pointers

➢ More on object-oriented programming

9

Why C++?

• Despite its many competitors C++ has remained popular

for ~30 years and will continue to be so in the foreseeable

future.

• Why?

• Complex problems and programs can be effectively implemented

• OOP works in the real world!

• No other language quite matches C++’s combination of

performance, expressiveness, and ability to handle complex

programs.

10

When to choose C++

• Choose C++ when:

• Program performance matters

• Dealing with large amounts of data, multiple CPUs, complex

algorithms, etc.

• Programmer productivity is less important

• It is faster to produce working code in Python, R, Matlab or

other scripting languages!

• The programming language itself can help organize your code

• Ex. In C++ your objects can closely model elements of your

problem.

• Access to libraries

• Ex. Nvidia’s CUDA Thrust library for GPUs

• Your group uses it already!

11

Outline

➢ Very brief history of C++

➢ Definition of object-oriented programming

➢ When C++ is a good choice

➢ First C++ program!

➢ Some C++ syntax

➢ Function calls

➢ Create a C++ class

➢ References and Pointers

➢ More on object-oriented programming

12

Hello, World! explained

The main routine – the

start of every C++

program!

It returns an integer

value to the operating

system and (in this

case) takes no
arguments: main()The return statement returns an integer value to

the operating system after completion.

0 means “no error”.

C++ programs must return an integer value.

13

loads a header file containing

function and class definitions

• Loads a namespace called std.

• Namespaces are used to

separate sections of code for

programmer convenience.

• To save typing we’ll always use

this line in this tutorial.

• cout is the object that writes to the stdout device, i.e., the console window.

• It is part of the C++ standard library.

• Without the “using namespace std;” line this would have been called as

std::cout. It is defined in the iostream header file.

• << is the C++ insertion operator. It is used to pass characters from the right to

the object on the left.

• endl is the C++ newline character.

14

Hello, World! explained

C++ Reserved Keywords
constexpr

constinit

const_cast

continue

decltype

default

delete

do

double

dynamic_cast

else

enum

explicit

export

extern

false

float for

friend

goto

if

inline

int long

mutable

namespace

new

noexcept

not not_eq

nullptr

operator or

or_eq

private

protected

public

register

reinterpret_cast

requires

return

short

signed

sizeof

static

static_assert

static_cast

struct

switch template

this

thread_local

throw

true try

typedef

typeid

typename

union

unsigned

using

virtual

void

volatile

wchar_t

while xor

xor_eq

final*

import*

module*

override*

alignas

alignof

and

and_eq

asm auto

bitand

bitor

bool

break

case

catch

char

char8_t

char16_t

char32_t

class

co_await

co_return

co_yield

compl

concept

const

consteval

∗Note: context sensitive

Behind the Scenes: The Compilation Process

16

Header Files

• C++ (along with C) uses header

files as to hold definitions for the

compiler to use while compiling.

• A source file (file.cpp) contains

the code that is compiled into an

object file (file.o).

• The header (file.h) is used to tell

the compiler what to expect when

it assembles the program in the

linking stage from the object files.

• Source files and header files can

refer to any number of other

header files.

#include <iostream>

using namespace std;

int main(){

string hello = "Hello";

string world = "world!";

string msg = hello + " " + world;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

C++ language headers aren’t referred to with

the .h suffix. <iostream> provides definitions

for I/O functions, including the cout function.

17

Slight change

• Let’s put the message into some

variables of type string and print some

numbers.

• Things to note:

• Strings can be concatenated with a +

operator.

• No messing with null terminators or

strcat() as in C

• Some string notes:

• Access a string character by brackets

or function:

• msg[0] → “H” or msg.at(0) → “H”

• C++ strings are mutable – they

can be changed in place.

#include <iostream>

using namespace std;

int main(){

string hello = "Hello";

string world = "world!";

string msg = hello + " " + world;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

18

A first C++ class: string

• string is not a basic type

(more on those later), it is a

class.

• string hello creates an

instance of a string called

“hello”.

• hello is an object.

• Remember that a class

defines some data and a set

of functions (methods) that

operate on that data.

#include <iostream>

using namespace std;

int main(){

string hello = "Hello";

string world = "world!";

string msg = hello + " " + world;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

19

A first C++ class: string

• Update the code as you see

here.

• After the last character is

entered, IDE will display

some info about the string

class.

• If you click or type something

else just delete and re-type

the last character.

• Ctrl-space will force the list

to appear.

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello";

string world = "world!";

string msg = hello + " " + world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

msg

return 0;

}

20

A first C++ class: string

List of other

string objects

Shows this

function

(main) and the

type of msg

(string)

List of string

methods

Next: let’s find the size() method without scrolling for it.

21

A first C++ class: string

• Start typing “msg.size()” until it appears in the list.

• Once it’s highlighted (or you scroll to it) press the Tab key to auto-

enter it.

• On the right you can click “Open declaration” to see how the C++

compiler defines size(). This will open basic_string.h, a built-in

file.

22

A first C++ class: string

• Tweak the code to print the

number of characters in the

string, build, and run it.

• From the point of view of main(),

the msg object has hidden away

its means of tracking and

retrieving the number of

characters stored.

• Note: while the string class has

a huge number of methods your

typical C++ class has far fewer!

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello" ;

string world = "world!" ;

string msg = hello + " " + world ;

cout << msg << endl ;

msg[0] = 'h';

cout << msg << endl ;

cout << msg.size() << endl ;

return 0;

}

▪ Note that cout prints integers

without any modification!

23

Outline

➢ Very brief history of C++

➢ Definition of object-oriented programming

➢ When C++ is a good choice

➢ First C++ program!

➢ Some C++ syntax

➢ Function calls

➢ Create a C++ class

➢ References and Pointers

➢ More on object-oriented programming

24

Basic Syntax

• C++ syntax is very similar to C, Java, or C#. Here’s a few things up front and

we’ll cover more as we go along.

• Curly braces are used to denote a code block (like the main() function):

{ … some code … }

• Statements end with a semicolon:

• Comments are marked for a single line with a // or for multilines with a pair of /*

and */ :

• Variables can be declared at any time in a code block:

void my_function()

{

int a ;

a=1 ;

int b;

}

int a ;

a = 1 + 3 ;

// this is a comment.

/* everything in here

is a comment */

25

• Functions are sections of code that are called from other code.

• Functions always have a return argument type, a function name, and then a

list of arguments separated by commas:

• A void type means the function does not return a value.

• Variables are declared with a type and a name:

int add(int x, int y) {

int z = x + y ;

return z ;

}

// No arguments? Still need ():

void my_function() {

/* do something...

but a void value means the

return statement can be

skipped.*/

} // Specify the type

int x = 100;

float y;

vector<string> vec ;

// Sometimes types can be

inferred

auto z = x;

26

Basic Syntax

• A sampling of arithmetic operators:

• Arithmetic: + - * / % ++ --

• Logical: && (AND) || (OR) ! (NOT)

• Comparison: == > < >= <= !=

• Sometimes these can have special meanings beyond arithmetic, for

example the “+” is used to concatenate strings.

• What happens when a syntax error is made?

• The compiler will complain and refuse to compile the file.

• The error message usually directs you to the error but sometimes

the error occurs before the compiler discovers syntax errors so

you hunt a little bit.

27

Basic Syntax

Built-in (aka primitive or intrinsic) Types

• “primitive” or “intrinsic” means these types are not objects

• Here are the most commonly used types.

• Note: The exact bit ranges here are platform and compiler dependent!

• Typical usage with PCs, Macs, Linux, etc. use these values

• Variations from this table are found in specialized applications like embedded system

processors.

Name Name Value

char unsigned char 8-bit integer

short unsigned short 16-bit integer

int unsigned int 32-bit integer

long unsigned long 64-bit integer

bool true or false

Name Value

float 32-bit floating point

double 64-bit floating point

long long 128-bit integer

long double 128-bit floating point

http://www.cplusplus.com/doc/tutorial/variables

28

http://www.cplusplus.com/doc/tutorial/variables/
http://www.cplusplus.com/doc/tutorial/variables

Need to be sure of integer sizes?

• In the same spirit as using integer(kind=8) type notation in Fortran, there are

type definitions that exactly specify exactly the bits used. These were added

in C++11.

• These can be useful if you are planning to port code across CPU

architectures (ex. Intel 64-bit CPUs to a 32-bit ARM on an embedded board)

or when doing particular types of integer math.

• For a full list and description see:

• http://www.cplusplus.com/reference/cstdint/

Name Name Value

int8_t uint8_t 8-bit integer

int16_t uint16_t 16-bit integer

int32_t uint32_t 32-bit integer

int64_t uint64_t 64-bit integer

#include <cstdint>

29

http://www.cplusplus.com/reference/cstdint/

Reference and Pointer Variables

• Variable and object values are stored in particular locations in the computer’s memory.

• Reference and pointer variables store the memory location of other variables.

• Pointers are found in C. References are a C++ variation that makes pointers easier and

safer to use.

string hello = "Hello";

string *hello_ptr = &hello;

string &hello_ref = hello;

The object hello occupies

some computer memory.

The asterisk indicates that hello_ptr is a pointer to

a string. hello_ptr variable is assigned the

memory address of object hello which is

accessed with the “&” syntax.

The & here indicates that hello_ref is a reference to a string. The

hello_ref variable is assigned the memory address of object

hello automatically.

30

Type Casting

• C++ is strongly typed. It will auto-convert a variable of one type to

another in a limited fashion: if it will not change the value.

• Conversions that don’t change value:

• increasing precision (float → double) or

• integer → floating point of at least the same precision.

• C++ allows for C-style type casting with the syntax:

• (new type) expression

short x = 1 ;

int y = x ; // OK

short z = y ; // NO!

double x = 1.0 ;

int y = (int) x ;

float z = (float) (x / y) ;

31

Type Casting

static_cast<new type>(expression)

• This is exactly equivalent to the C style cast.

• This identifies a cast at compile time.

• This will allow casts that reduce precision (ex. double → float)

• ~99% of all your casts in C++ will be of this type.

double d = 1234.56 ;

float f = static_cast<float>(d) ;

// same as

float g = (float) d ;

32

Type Casting

dynamic_cast<new type>(expression)

• Special version where type casting is performed at runtime, only

works on reference or pointer type variables.

• Usually handled automatically by the compiler where needed, rarely

done by the programmer.

33

Type Casting cont’d

const_cast<new type>(expression)

• Variables labeled as const can’t have their value changed.

• const_cast lets the programmer remove or add const to

reference or pointer type variables.

• If you need to do this, you probably want to re-think your code.

“unsafe”: the compiler will not protect you here!

The programmer must make sure everything is correct!

Danger!

34

Type Casting cont’d

reinterpret_cast<new type>(expression)

• Takes the bits in the expression and re-uses them unconverted as

a new type.

• Also only works on reference or pointer type variables.

• Sometimes useful when reading in binary files and extracting

parameters.

35

Outline

➢ Very brief history of C++

➢ Definition of object-oriented programming

➢ When C++ is a good choice

➢ First C++ program!

➢ Some C++ syntax

➢ Function calls

➢ Create a C++ class

➢ References and Pointers

➢ More on object-oriented programming

36

Functions

• 4 function calls are listed.

• The 1st and 2nd functions are

identical in their behavior.

• The values of L and W are sent to the

function, multiplied, and the product is

returned.

• RectangleArea2 uses const

arguments

• The compiler will not let you modify

their values in the function.

• Try it! Uncomment the line and see

what happens when you recompile.

• The 3rd and 4th versions pass the

arguments by reference with an

added &

float RectangleArea1(float L, float W) {

return L*W ;

}

float RectangleArea2(const float L, const float W) {

// L=2.0 ;

return L*W ;

}

float RectangleArea3(const float& L, const float& W) {

return L*W ;

}

void RectangleArea4(const float& L, const float& W,

float& area) {

area= L*W ;

}

The function arguments

L and W are sent as

type float.

Product is computed

The return type

is float.

37

Pass by Value

• C++ defaults to pass by value behavior when calling a function.

• The function arguments are copied when used in the function.

• Changing the value of L or W in the RectangleArea1 function does not effect

their original values in the main() function

• When passing objects as function arguments it is important to be aware that

potentially large data structures are automatically copied!

main()

float L

float W

RectangleArea1(float L, float W)

float L

float W

copy

copy

38

Pass by Reference

• Pass by reference behavior is triggered when the & character is used to modify the

type of the argument.

• This is the type of behavior you see in Fortran, Matlab, Python, and others.

• Pass by reference function arguments are NOT copied. Instead the compiler sends

a pointer to the function that references the memory location of the original variable.

The syntax of using the argument in the function does not change.

• Pass by reference arguments almost always act just like a pass by value argument

when writing code EXCEPT that changing their value changes the value of the

original variable!!

• The const modifier can be used to prevent changes to the original variable in

main().

main()

float L

float W

RectangleArea3(const float& L, const float& W)

float L

float W

reference

reference

39

• In RectangleArea4 the pass by reference behavior is

used as a way to return the result without the function

returning a value.

• The value of the area argument is modified in the main()

routine by the function.

• This can be a useful way for a function to return multiple

values in the calling routine.

void RectangleArea4(const float& L, const float& W, float& area) {

area = L*W ;

}

void does not return a value.

40

Pass by Reference

• In C++ arguments to functions can be objects …

• which can contain any quantity of data you’ve

defined!

• Example: Consider a string variable containing 1

million characters (approx. 1 MB of RAM).

• Pass by value requires a copy – 1 MB.

• Pass by reference requires 8 bytes!

41

Passing objects to Functions

Passing objects to Functions

• Pass by value could potentially mean the accidental

copying of large amounts of memory which can greatly

impact program memory usage and performance.

• When passing by reference, use the const modifier

whenever appropriate to protect yourself from coding

errors.

• Generally speaking – use const anytime you don’t want to

modify function arguments in a function.

42

Function overloading

• Briefly: The same function can be implemented multiple times with

different arguments.

• This allows for special cases to be handled, or specialized behavior for

different types.

• Multiple constructors in a class are an example of function overloading.

float sum(float a, float b) {

return a + b;

}

int sum(int a, int b) {

return a + b;

}

43

Outline

➢ Very brief history of C++

➢ Definition of object-oriented programming

➢ When C++ is a good choice

➢ First C++ program!

➢ Some C++ syntax

➢ Function calls

➢ Create a C++ class

➢ References and Pointers

➢ More on object-oriented programming

44

A first C++ class

• Start a new project. Call it

BasicRectangle.

• In the main.cpp, we’ll define a

class called BasicRectangle

• First, just the basics fields:

• length and width.

• Enter the code on the right before
the main() function in the

main.cpp file (copy and paste is

fine) and create a
BasicRectangle object in

main.cpp:

#include <iostream>

using namespace std;

class BasicRectangle

{

public:

// width

float W ;

// length

float L ;

};

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

return 0;

}

45

Basic C++ Class Syntax

Curly braces at the

beginning and end followed

by a semi-colon

class BasicRectangle

{

public:

// width ;

float W ;

// length

float L ;

};

class

keyword
Name of class

Internal variables are called

members

public keyword indicates

everything following the

keyword is accessible by

any other code outside of

this class.

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

The class can now be used to

declare an object named rectangle.

The width and length of the

rectangle can be set.

46

Accessing data in the class

• Public members in an object can

be accessed (for reading or writing)

with the syntax:

• object.member

• Next let’s add a function inside the

object (called a method) to

calculate the area.

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

return 0;

}

47

Methods are accessed just like

members:

object.method(arguments)

class BasicRectangle

{

public:

// width ;

float W ;

// length

float L ;

float Area() {

return W * L ;

}

};

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 21.0 ;

rectangle.L = 2.0 ;

cout << rectangle.Area() << endl ;

return 0;

}

method Area does not take any

arguments, it just returns the

calculation based on the object

members.

48

Accessing methods in the class

Basic C++ Class Summary

• C++ classes are defined with the keyword class and must be

enclosed in a pair of curly braces plus a semi-colon:

class ClassName { …. } ;

• The public keyword is used to mark members (variables) and

methods (functions) as accessible to code outside the class.

• The combination of data and the functions that operate on it is the

OOP concept of encapsulation.

49

Encapsulation in Action

• In C – calculate the area of a few shapes…

• In C++ with Circle and Rectangle classes…not possible to

miscalculate.

/* assume radius and width_square are assigned

already ; */

float a1 = AreaOfCircle(radius) ; // ok

float a2 = AreaOfSquare(width_square) ; // ok

float a3 = AreaOfCircle(width_square) ; // !! OOPS

Circle c1 ;

Rectangle r1 ;

// ... assign radius and width

...

float a1 = c1.Area() ;

float a2 = r1.Area() ;

50

Now for a “real” class

• Defining a class in the main.cpp file is not typical.

• Two parts to a C++ class:

• Header file (my_class.h)

• Contains the interface (definition) of the class – members,

methods, etc.

• The interface is used by the compiler for type checking, enforcing

access to private or protected data, and so on.

• Also useful for programmers when using a class – no need to

read the source code, just rely on the interface.

• Source file (my_class.cc)

• Compiled by the compiler.

• Contains implementation of methods, initialization of members.

• In some circumstances there is no source file to go with a header file.

51

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

protected:

private:

};

#endif // RECTANGLE_H

#include “rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Rectangle::~Rectangle()

{

//dtor

}

rectangle.h rectangle.cpp

52

Now for a “real” class

Modify rectangle.h

• As in the sample BasicRectangle,

add storage for the length and width

to the header file.

• Add a declaration for the Area

method.

• The protected keyword will be

discussed later.

• The private keyword declares

anything following it (members,

methods) to be visible only to code

in this class.

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

float m_length ;

float m_width ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

53

rectangle.cpp

• The syntax:

class::method

• tells the compiler that this

is the code for the Area()

method declared in

rectangle.h

• Now take a few minutes to

fill in the code for Area().

• Hint – look at the code used in

BasicRectangle...

#include "rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Rectangle::~Rectangle()

{

//dtor

}

float Rectangle::Area()

{

}

54

Last Step

1. Go to the main.cpp file

2. Add an include statement for “rectangle.h”

3. Create a Rectangle object in main()

4. Add a length and width

5. Print out the area using cout.

• Hint: just like the BasicRectangle example…

55

Solution

• You should have come up with something like this:

#include <iostream>

using namespace std;

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

return 0;

}

56

Outline

➢ Very brief history of C++

➢ Definition of object-oriented programming

➢ When C++ is a good choice

➢ First C++ program!

➢ Some C++ syntax

➢ Function calls

➢ Create a C++ class

➢ References and Pointers

➢ More on object-oriented programming

57

References and Pointers

• Part 1 introduced the concept of passing by reference when calling

functions.

• Selected by using the & character in function argument types:

int add (int &a, int b)

• References hold a memory address of a value.

int add (int &a, int b)→ a has the value of a memory

address, b has an integer value.

• Used like regular variables and C++ automatically fills in the value of the

reference when needed:

int c = a + b ; → “retrieve the value of a and add it to the value

of b”

58

References and Pointers

• From C there is another way to deal with the memory address of a variable:

via pointer types.

• Similar syntax in functions except that the & is replaced with a *:

int add (int *a, int b)

• To get a value from a pointer requires a manual dereferencing by the

programmer:

int c = *a + b ; → “retrieve the value of a and add it to the value of b”

59

Item Reference Pointer

Declaration int &ref ; int *ptr ;

Set memory address to

something in memory

int a = 0 ;

int &ref = a ;

int a = 0 ;

int *ptr = &a ;

Fetch value of thing in

memory

cout << ref ; cout << *ptr ;

Can refer/point to nothing

(null value)?

No Yes

Can change address that it

refers to/points at?

No.

int a = 0 ;

int b = 1 ;

int &ref = a ;

ref = b ;

// value of a is now 1!

Yes

int a = 0 ;

int b = 1 ;

int *ptr = &a ;

ptr = &b ;

// ptr now points at b

Object member/method

syntax

MyClass obj ;

MyClass &ref = obj ;

ref.member ;

ref.method();

MyClass obj ;

MyClass *ptr = obj ;

ptr->member ;

ptr->method();

// OR

(*ptr).member ;

(*ptr).method() ;

60

References and Pointers

Item Reference Pointer

Declaration int &ref ; int *ptr ;

Set memory address to

something in memory

int a = 0 ;

int &ref = a ;

int a = 0 ;

int *ptr = &a ;

Fetch value of thing in

memory

cout << ref ; cout << *ptr ;

Can refer/point to nothing

(null value)?

No Yes

Can change address that it

refers to/points at?

No.

int a = 0 ;

int b = 1 ;

int &ref = a ;

ref = b ;

// value of a is now 1!

Yes

int a = 0 ;

int b = 1 ;

int *ptr = &a ;

ptr = &b ;

// ptr now points at b

Object member/method

syntax

MyClass obj ;

MyClass &ref = obj ;

ref.member ;

ref.method();

MyClass obj ;

MyClass *ptr = obj ;

ptr->member ;

ptr->method();

// OR

(*ptr).member ;

(*ptr).method() ;

int a = 0 ;

int &ref = a ;

int *ptr = &a ;

int a: 4 bytes in memory at

address 0xAABBFF with a

value of 0.

Value stored in ref:

0xAABBFF

Value stored in ptr:

0xAABBFF

61

References and Pointers

When to use a reference or a pointer

• Both references and pointers can be used to refer to objects in

memory in methods, functions, loops, etc.

• Avoids copying due to default call-by-value C++ behavior

• Could lead to memory/performance problems.

• Or cause issues with open files, databases, etc.

• If you need to:

• Hold a null value (i.e., point at nothing), use a pointer.

• Re-assign the memory address stored, use a pointer.

• Otherwise, use a reference.

• References are much easier to use!

• No need to check if a reference has a null value … since they can’t hold one.

62

When to use a reference or a pointer

• Both references and pointers can be used to refer to objects in memory

in methods, functions, loops, etc.

• Avoids copying due to default call-by-value C++ behavior

• Could lead to memory/performance problems.

• Or cause issues with open files, databases, etc.

// Pointer to a null value

int *a = NULL ; // C-style

int *b = nullptr ; // C++11 style.

// Reference to a null value

// won't compile.

int &c = nullptr ;

63

Read more: https://www.geeksforgeeks.org/pointers-vs-references-cpp/

https://www.geeksforgeeks.org/pointers-vs-references-cpp/

Null Value Checking

• A null value means the pointer is not currently pointing at anything.

• It’s a good idea to check before accessing the value they point at.

• References cannot be null, so the code on the right does not need

checking.

// Pointer version

void add(const int *a, const int b, int *c)

{

if (a && c) { // check for null pointer

*c = *a + b ;

}

}

// a && c → this means if a AND c are not

// null

// Reference version

void add(const int &a, const

int b, int &c)

{

c = a + b ;

}

64

Outline

➢ Very brief history of C++

➢ Definition of object-oriented programming

➢ When C++ is a good choice

➢ First C++ program!

➢ Some C++ syntax

➢ Function calls

➢ Create a C++ class

➢ References and Pointers

➢ More on object-oriented programming

65

The formal concepts in OOP

• Object-oriented programming (OOP):

• Defines classes to represent data and logic in

a program. Classes can contain members

(data) and methods (internal functions).

• Creates instances of classes, aka objects, and

builds the programs out of their interactions.

• The core concepts in addition to classes

and objects are:

• Encapsulation

• Inheritance

• Polymorphism

• Abstraction

Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

66

OOP Core Concepts

Encapsulation

As mentioned while building the C++

class in the last session.

Bundles related data and functions into a

class

Inheritance

Builds a relationship between classes to

share class members and methods

Abstraction

The hiding of members, methods, and

implementation details inside of a

class.

Polymorphism

The application of the same code to

multiple data types

There are 3 kinds, all of which are

supported in C++.

However only 1 is actually called

polymorphism in C++ jargon (!)

67

C++ Classes

• In the Rectangle class, IDE

generated two methods

automatically.

• Rectangle() is a constructor. This is

a method that is called when an

object is instantiated for this class.

• Multiple constructors per class are

allowed

• ~Rectangle() is a destructor. This is

called when an object is removed

from memory.

• Only one destructor per class is

allowed!

• (ignore the virtual keyword for now)

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

float m_length ;

float m_width ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

68

Encapsulation

• Bundling the data and area calculation for a rectangle into

a single class is and example of the concept of

encapsulation.

69

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

float m_length ;

float m_width ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

Construction and Destruction

• The constructor is called when

an object is created.

• This is used to initialize an

object:

• Load values into member variables

• Open files

• Connect to hardware, databases,

networks, etc.

70

Construction and Destruction

• The constructor is called when

an object is created.

• This is used to initialize an

object:

• Load values into member variables

• Open files

• Connect to hardware, databases,

networks, etc.

• The destructor is called when

an object goes out of scope.

• Example:

• Object c1 is created when the

program reaches the first line of the

function, and destroyed when the

program leaves the function.

void function() {

ClassOne c1 ;

}

71

When an object is instantiated…

• The rT object is created in memory.

• When it is created its constructor is called to

do any necessary initialization.

• Here the constructor is empty so nothing is

done.

• The constructor can take any number of

arguments like any other function but it cannot

return any values.

• Essentially the return value is the object itself!

• What if there are multiple constructors?

• The compiler chooses the correct one based on

the arguments given.

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

}

#include "rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Note the constructor has

no return type!

72

#include "rectangle.h“

/* Better to do this */

Rectangle::Rectangle(float width, float length):

m_width(width),m_length(length) {

}

rectangle.cpp

class Rectangle

{

public:

Rectangle();

Rectangle(float width, float length) ;

/* etc */

};

A second constructor

rectangle.h

#include "rectangle.h"

/* OK to do this */

Rectangle::Rectangle(float width, float length){

m_width = width ;

m_length = length ;

}

• Two styles of constructor. The right code is the C++11 member initialization list style. At the

left is the old way. C++11 is preferred.

• With the old way the empty constructor is called automatically even though it does nothing

– it still adds a function call.

• Same rectangle.h for both styles.

OR

73

rectangle.cpp

Member Initialization Lists

Syntax:

MyClass(int A, OtherClass &B, float C):

m_A(A),

m_B(B),

m_C(C) {

/* other code can go

here */

}

Colon goes here

Members assigned

and separated with

commas. Note:

order doesn’t matter.

Additional code can

be added in the code

block.

74

and now use both constructors

• Both constructors are now

used.

• The new constructor

initializes the values when

the object is created.

• Constructors are used to:

• Initialize members

• Open files

• Connect to databases

• Etc.

#include <iostream>

using namespace std;

#include "rectangle.h"

int main(){

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

Rectangle rT_2(2.0,2.0) ;

cout << rT_2.Area() << endl ;

return 0;

}

75

Default values

• C++11 added the ability to define

default values in headers in an

intuitive way.

• Pre-C++11 default values would have

been coded into constructors.

• If members with default values get

their value set in constructor than the

default value is ignored.

• i.e., no “double setting” of the value.

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

// could do:

float m_length = 0.0 ;

float m_width = 0.0 ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

76

Default constructors and destructors

• The two methods created by IDE

automatically are explicit versions of the

default C++ constructors and destructors.

• Every class has them – if you don’t define

them then empty ones that do nothing will

be created for you by the compiler.

• If you really don’t want the default

constructor you can delete it with the delete

keyword.

• Also in the header file you can use the

default keyword if you like to be clear that

you are using the default.

class Foo {

public:

Foo() = delete ;

// Another constructor

// must be defined!

Foo(int x) ;

};

class Bar {

public:

Bar() = default ;

};

77

Custom constructors and destructors

• You must define your own constructor when you want to initialize an

object with arguments.

• A custom destructor is always needed when internal members in the class

need special handling.

• Examples: manually allocated memory, open files, hardware drivers, database

or network connections, custom data structures, etc.

78

Destructors

• Destructors are called when an

object is destroyed.

• Destructors have no return type.

• There is only one destructor

allowed per class.

• Objects are destroyed when they

go out of scope.

• Destructors are never called

explicitly by the programmer. Calls

to destructors are inserted

automatically by the compiler.

Rectangle::~Rectangle()

{

//dtor

}

This class just has 2 floats as members which are

automatically removed from memory by the

compiler.

House object

~House() destructor

79

Destructors

• Example:

class Example {

public:

Example() = delete ;

Example(int count) ;

virtual ~Example() ;

// A pointer to some

memory

// that will be allocated.

float *values = nullptr ;

};

Example::Example(int count) {

// Allocate memory to store

"count"

// floats.

values = new float[count];

}

Example::~Example() {

// The destructor must free this

// memory. Only do so if values

is not

// null.

if (values) {

delete[] values ;

}

}

80

Scope

• Scope is the region where a variable is valid.

• Constructors are called when an object is created.

• Destructors are only ever called implicitly.

int main() { // Start of a code block

// in main function scope

float x ; // No constructors for built-in types

ClassOne c1 ; // c1 constructor ClassOne() is called.

if (1){ // Start of an inner code block

// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne() is called.

} // c2 destructor ~ClassOne() is called.

ClassOne c3 ; // c3 constructor ClassOne() is called.

} // leaving program, call destructors for c3 and c1 ~ClassOne()

// variable x: no destructor for built-in type

81

Reference

➢Reading Assignment: Chapters 1 and 2 of

“C++ How to Program”

➢See also:

➢https://cplusplus.com/

➢https://www.w3schools.com/cpp/

82

https://cplusplus.com/
https://www.w3schools.com/cpp/

