
Some miscellaneous topics

Fundamentals of Computer and Programming

Instructor: Morteza Zakeri, Ph.D. (m-zakeri@live.com)

Spring 2024

Modified Slides from Dr. Hossein Zeinali and Dr. Bahador Bakhshi

Computer Engineering Department, Amirkabir University of Technology

Lecture 13

File postfix

➢Most compilers consider the source code

file postfix:

➢ .c → C source code

➢ .cc , .cpp → C++ source code

➢ .h for header file → C and C++ codes

2

A program in multiple file

➢ We can create our ".h" files

➢ func.c

#include <stdio.h>

void f(int x) {

printf("%d", x);

}

➢ func.h

void f(int);

➢ main.c

#include "func.h"

int main(void){

f(20);

}

3

Preprocessor Command

➢We can use preprocessor commands to

control how our code is compiled

➢ Conditional compilation

➢Main preprocessor commands
➢ #define XYZ → define XYZ as a preprocessor definition

(value is not important)

➢ #ifdef XYZ → is true if XYZ is defined

➢ #ifndef XYZ → is true if XYZ is not defined

➢ #if XYZ → is true if XYZ != 0

➢ #endif → End of a if block

4

Preprocessor Command

#include <stdio.h>

#define ABC

#define XYZ 1

int main(){

#ifdef ABC

printf("ABC is defined \n");

#endif

printf ("I am here\n");

#if XYZ

printf("XYZ is defined and is not 0\n");

#endif

}

5

Use Preprocess Commands for Debugging

#include <stdio.h>

#define DEBUG 1

int f(int x){

#if DEBUG

printf("We are in file = %s, in function %s, in line %d\n",

__FILE__, __func__, __LINE__);

#endif

return x;

}

int main(void){

#if DEBUG

printf("We are in file = %s, in function %s, in line %d\n",

__FILE__, __func__, __LINE__);

#endif

f(10);

getchar();

return 0;

}

6

Formatting, Naming, Documenting

■ Be consistent with the formatting of the source code (e.g., indentation strategy,

tabs versus spaces, spacing, brackets/parentheses).

■ Avoid a formatting style that runs against common practices.

■ Be consistent in the naming conventions used for identifiers (e.g., names of objects,

functions, namespaces, types) and files.

■ Avoid bizarre naming conventions that run against common practices.

■ Comment your code. If code is well documented, it should be possible to quickly

ascertain what the code is doing without any prior knowledge of the code.

■ Use meaningful names for identifiers (e.g., names of objects, functions, types, etc.).

This improves the readability of code.

■ Avoid magic literal constants. Define a constant object and give it a meaningful

name.

constexpr double miles_per_kilometer = 0.621371;

7

Error Handling

■ If a program requires that certain constraints on user input be satisfied in

order to work correctly, do not assume that these constraints will be

satisfied. Instead, always check them.

■ Always handle errors gracefully.

■ Provide useful error messages.

■ Always check return codes. Even if the operation/function theoretically

cannot fail (under the assumption of bug-free code), in practice it may fail

due to a bug.

■ If an operation is performed that can fail, check the status of the operation

to ensure that it did not fail (even if you think that it should not fail). For

example, check for error conditions on streams.

■ If a function can fail, always check its return value.

Copyright © 2015–2021 Michael D.

Adams

8

Simplicity

 Do not unnecessarily complicate code. Use the simplest solution that will

meet the needs of the problem at hand.

 Do not impose bogus limitations. If a more general case can be handled

without complicating the code and this more general case is likely to be

helpful to handle, then handle this case.

 Do not unnecessarily optimize code. Highly optimized code is often much

less readable. Also, highly optimized code is often more difficult to write

correctly (i.e., without bugs). Do not write grossly inefficient code that is

obviously going to cause performance problems, but do not optimize

things beyond avoiding gross inefficiencies that you know will cause

performance problems.

9

Code Duplication

■ Avoid duplication of code. If similar code is needed is more than

place, put the code in a function. Also, utilize templates to avoid

code duplication.

■ The avoidance of code duplication has many advantages.

It simplifies code understanding. (Understand once, instead of n times.)

It simplifies testing. (Test once, instead of n times.)

It simplifies debugging. (Fix bugs in one place, instead of n places.)

It simplifies code maintenance. (Change code in one place, instead of n

places.)

1

2

3

4

■ Make good use of the available libraries. Do not reinvent the wheel.

If a library provides code with the needed functionality, use the

code in the library.

Copyright © 2015–2021 Michael D.

Adams

Programming in C++ 10

The last words …

■ Use as many information resources as you can to learn as much as

you can about C.

■ Read books, articles, and other documents.

■ Watch videos.

■ Attend lectures and seminars.

■ Participate in programming competitions.

■ But most importantly:

Write code!

Write lots and lots and lots of code!

■ The only way to truly learn a programming language well is to

use it heavily (i.e., write lots of code using the language).

Programming in C++ 11

Reference

➢Reading Assignment: Chapters 13 and 14

of “C How to Program”

12

