Lecture 12

File Processing

Fundamentals of Computer and Programming

Instructor: Morteza Zakeri, Ph.D. (m-zakeri@live.com)
Spring 2024

Modified Slides from Dr. Hossein Zeinali and Dr. Bahador Bakhshi

Computer Engineering Department, Amirkabir University of Technology

B 44|

What We Will Learn

» Introduction
> Text vs. Binary files

» Text File Operations

> Open / Close
> Read / Write

» Binary File Operations

> Open / Close
> Read / Write

» Bugs and avoiding them

£ 2

What We Will Learn

» Introduction
> Text vs. Binary files

>
>
>

>
>
>

>
B 3

Introduction

> Data storages of computers

» 1. Main memory (RAM)

> It Is volatile
> Read / Write data using variables

» 2. Secondary storage (Hard Disk)
> It Is not volatile (non-volatile)
> Read / Write data using files

B 4

Text and Binary Files

» How does computer store data?
> They are coded

» \When data are stored in main memory
> It is variable
> Its coding is specified by the type: int, char, ...

» When data are stored in secondary memory
> It is file
> Coding is specified by the file type: Text or Binary

B 5 i

Text Files
» ASCII encoding

» American Standard Code for Information Interchange

»Each line Is a string

»Each line Is terminated by \n

» Human-readable files
> Editable by a text editor (e.g. Notepad++)

» Examples: C source files (.c) , Every . txt files

B 6 i

https://notepad-plus-plus.org/downloads/

Binary Files

» Binary encoding

> int, double, float, struct, ... are directly (as O, 1)
stored in the file.

» Human unreadable files

> Is not editable by text editor
> Needs special editor (HxD) which understands the file

» Examples
> .exe files
> Media files, such as .mp3, .mkv
» Image files, such as .bmp, . jpg

B ;

https://mh-nexus.de/en/hxd/

Working with Files

» Until now
> We read/write data from/to terminal (console)

>In C
> We can read data from a file

> We can write data to a file

B

Working with Files

» Main steps in working with files
» 1) Open file
> Get a file handler from Operating System

»2) Read/Write
> Use the handler

» 3) Close file
> Free the handler

»4) Other operations
» Check end of file, skip in file, ...

Q% 9

Opening Files

» Function fopen opens files
#include <stdio.h>

FILE * fopen (char *name, char *mode);

> FILE * |S struct

» Saves information about file.
> We do not need to know about it.

» |If cannot open file, fopen returns NULL.

> name IS the name of file:

> Absolute name: C: \prog\test. txt
> Relative name: Mytest. txt

@ :

Opening Files: Modes

» r. open for read. We cannot write to the file.

» w. open for write. Create new file. We cannot
read form the file. If file exist, its content will be
destroyed.

» a:. open for write. We cannot read form the file. If
file exist, its content wont be destroyed. We write
at end of file.

»>»r+, wt, a+:sametor, w, a butwe can
read and write.

L 1 i

Opening Files: Modes

[Openi

ng Files]

I:
Reading
Writing

Initial Position:
Beginning

&

or?

Reading and Writing

Initial Position:
End

Initial
Position

12

Opening Files: Modes

» Files are
> Text: Some strings
> Binary: Image file, Video file, ...

» To open binary file, we should add b to the
mode.
> rb : open binary file for read
> w+b: create new binary file for read and write

L £ i

Opening Files: Example

FILE *fp;
fp = fopen("c:\\test.txt", "r");
if (fp == NULL) {

printf ("Cannot open file\n");

return -1;

}
» Open file c:\test.ixt for read

Q% 14

File-Position Pointer (FPP)

> File-Position Pointer
> A pointer in file
» Points to current location of read and write

» When file is open
> File-Position Pointer Is set to start of file

» When you read/write from/to file

> The File-Position Pointer advance according to the size of
data

» If you read 2 bytes, it moves 2 bytes
» If you write 50 bytes, it advances 50 bytes

L s i

Closing Files

» Each opened file should be closed.

> |If we write to a file and do not close i,
some of data may be LOST.

» To close the file

fclose (FILE *fp);

16

B

Understanding fflush in C

» Functionality:
» f£f1lush stands for "flush buffer."

> Itis used to clear the output buffer, ensuring that data is written
to the file or displayed on the console.

> Essential when switching between reading and writing modes on
a file.

» Usage:
> Syntax: int fflush(FILE *stream) ;
> It takes a pointer to the file stream as an argument.
> Returns 0 on success, EOF on failure.

FILE *filePtr = fopen ("example. txt", "w");
fprintf (filePtr, "Hello, World!");
fflush(filePtr); // Ensure data is written immediately

L 1 i

What We Will Learn

>
>

» Text File Operations

> Open/Close
> Read/Write

>
>
>

>
@ ;

Reading/Writing Text File

> fscanf reads from a file. £scanf Is the same as
scanft.
» Returns EOF If the End-of-File has been reached.

» fprintf writes to a file. fprintf Is the same as
printf.

int fscanf (FILE *fp,"format",
parameters) ;

int fprintf (FILE *fp,"format",
parameters) ;

L 1 i

Text File: Example

» Assume we have a file in the following format:

<Number of students>
<id of student 1> <grade of student 1>

<id of student 2> <grade of student 2>

<id of student n> <grade of student n>

L 2 i

Text File: Example

#include <stdio.h>

. . J10 cbaseisld 0w g ool aS | elael
#include <stdlib.h> 1D ORETEIE 000 5 0 S

int main (void) {
FILE *fpin;
char inname[20];
int num, i, id;
float sum, average, grade;

printf ("Enter the name of input file: ");
scanf ("%$s", inname) ;

fpin = fopen(inname, "r");

if (fpin == NULL) {
printf ("Cannot open %s\n", inname);
return -1;

@ ; &

Text File: Example

/* Read the number of students */ aslol
fscanf (fpin,"%d", &num) ;

/* Read the id and grade from file */
sum = 0;
for(i = 0; 1 < num; i++) {
fscanf (fpin, "%d %f", &id, &grade);
sum += grade;

}

average = sum / num;

printf ("Average = %$f\n", average) ;
fclose (fpin) ;

return O;

D ; &

Text File: Example 2

#include <stdio.h>
#include <stdlib.h>

Ailgze BB 51T, bgeisls 6 50 g 0 Lo a5 glaeliy
oSles 51 i Wil oped a5 Sbgmasls cad o

S <o B ol el
int main (void) { 190 650 LB e)

FILE *fpin, *fpout;

char inname[20], outname[20];
int num, i, id;

float sum, average, grade;

printf ("Enter the name of input file: ");
scanf ("%$s", inname) ;

printf ("Enter the name of output file: ");
scanf ("%$s", outname) ;

fpin = fopen (inname, "r");

if (fpin == NULL) {
printf ("Cannot open %s\n", inname);
return -1;

}

L 2 i

Text File: Example 2

FONRY
fpout = fopen (outname, "w");

if (fpout == NULL) {
printf ("Cannot open %s\n", outname) ;
return -1;

}

/* Read the number of students */
fscanf (fpin, "%d", &num);

/* Read the id and grade from file */
sum = 0;
for(i = 0; i < num; i++){
fscanf (fpin, "%d %f", &id, &grade);
sum += grade;

average = sum / num;

D . &

Text File: Example 2

fclose (fpin) ; aolol

fpin = fopen (inname, "r");

fscanf (fpin,"%d", &num);

fprintf (fpout, "%$f\n", average);
for(i = 0; i < num; i++) {
fscanf (fpin, "%d %f", &id, &grade) ;
if (grade >= average)
fprintf (fpout, "%d: %$s\n", id, "passed");

else
fprintf (fpout, "%d: %s\n", id, "failed");
}
fclose (fpin) ;
fclose (fpout) ;
return 0;

B 2 i

Reading/Writing Characters (Text Files)

> To write a character to file

fputc(char ¢, FILE *fp)

> To read a char from file

char fgetc (FILE *fp);

> Returns EOF if reaches to the End-of-File.

L 2 i

Text File: Example copy files

#include <stdlib.h> =S =95 01y 6998 bl g 0)5
e

int main(void) {

FILE *fpin, *fpout;
char inname[20], outname[20];
char c;

printf ("Enter the name of input file: ");
scanf ("%s", inname) ;

printf ("Enter the name of output file: ");
scanf ("%$s", outname) ;
fpin = fopen(inname, "r");
if (fpin == NULL) {
printf ("Cannot open %$s\n", inname);
return -1;

}

@ ; &

Text File: Example copy files

fpout = fopen (outname, "w");

if (fpout == NULL) {
printf ("Cannot open %s\n", outname) ;
return -1;

FONRY

while((c = fgetc(fpin)) != EOF)
fputc(c, fpout);

fclose (fpin) ;
fclose (fpout) ;

return 0O;

L 2 i

Checking End of File

» Each file has two indicators:
> End of fie indicator
> Error indicator

» These indicators are set when we want to read but there is not
enough data or there is an error.

» How to use
> Try to read

> If the number of read object is less than expected
» Check end of file > feof
» Check error of file > ferror
» feof tells that an attempt has been made to read past the end of

the file, which is not the same as that we just read the last data item
from a file. We have to read one past the last data item for feof to

return nonzero.

L 2 i

Checking End of File

» Previous example with feof

while (1) {

c = fgetc(fpin) ;
if (feof (fpin))
break;

fputc(c, fpout);

B

30

Read/Write a Line (Text File)

» We can read a line of file
> fscanf reads until the first white space

char * fgets(char *buff, int
maxnumber , FILE *fp);

> Read at most maxnumber - 1 chars

» Reading stops after EOF or \n, ifa\nisread itis
stored in buffer

» Add \O’ to the end of string

» If reach to end of file without reading any
character, return NULL

L o i

Read/Write a Line (Text File)

»We can write a line to file

int fputs(char *buff, FILE *fp)

» Write the string buff to file
»Does NOT add \n at the end

» 0On success, a hon-negative value Is

returned. On error, the function returns
EOF.

@ :

Example: Count the number of lines

char buf[500]; // 500 > every line

fpin fopen (inname, "r");

if (fpin == NULL) {
printf ("Cannot open %s\n", inname);
return -1;

}

while(fgets(buf, 500, fpin) !'= NULL)

count++;

printf ("Number of Lines = %$d\n", count);

B

33

]

Example: Copy files

#include <stdio.h>
#include <stdlib.h>

int main(void) {

FILE *fpin, *fpout;
char inname[20], outname[20];
char buf[1000];

Iy =95 9 6999 BB S ol &5 (slasli

S 9 0 1) 69959 LB g 055)
XS

printf ("Enter the name of input file: ");

scanf ("%s", inname) ;

printf ("Enter the name of output file: ");

scanf ("%s", outname) ;
fpin = fopen (inname, "r");
if (fpin == NULL) {

printf ("Cannot open %s\n", inname) ;

return -1;

}

B 3

Example: Copy files

fpout = fopen (outname, "w"); aals|
if (fpout == NULL) {

printf ("Cannot open %$s\n", outname) ;
return -1;

}

while (fgets (buf, 1000, fpin) != NULL)
fputs (fpout, buf) ;

fclose (fpin) ;
fclose (fpout) ;

return O;

L s i

Example: Reverse copy files

File 1: Jol BB 5 0,51, b oo oledlbl oS b
3 30 g pod R o Se p Ojg0
1 23456 7 sl o b e Job ,iSTas o lakas olass
12 34 56 78 90 el ot asiie Jyl B
123 456
File 2:
654 321

09 87 65 43 21
7 6 5 4 3 21

D . &

Example: Reverse copy files — vl

void reverse copyl (FILE *fpin, FILE *fpout) {

int lines, max len, i =0, j;
fscanf (fpin, "%d %d\n", &lines, &max len);
char arr[lines * max len];

do{
char ¢ = fgetc(fpin) ; g - .
if (feof (£pin)) Y\Ihat happen if input file
break ; is to large?!!
arr[i++] = c; Huge memory allocation!
}while (1) ; May not feasible

for(j =1i -1; 3 > -1; j--)
fputc(arr[j], fpout);

; &

Example: Reverse copy files — v2

void reverse_popyE(char *inname, char *outname) {

FILE * fpin = fopen(inname, "r"); FILE * fpout = fopen(outname, "w"
if ((fpin == NULL) || (fpout == NULL)){ printf ("Error") ;

}

int lines, max _len, i, j, k;
fscanf (fpin, "%d %d\n", &lines, &max len);
fclose (fpin) ;
char arr[max len];
for(i = 0; i < lines; i++){
int tmpl, tmp2;
FILE * fpin = fopen(inname, "r");
fscanf (fpin, "%d %d\n", &tmpl, &tmp2);

for(j = 0; j < lines - 1i; j++)
fgets(arr, max len, fpin);

fclose (fpin) ;

for(k = strlen(arr) - 1; k >= 0; k--)
fputc (arr[k], fpout);

fclose ‘fppn'l'\ .

@

’

)
exit(-1); }

So many open/close
Lot of dummy read

38

Return value of fprintf

» On success, the total number of characters
written Is returned.

» |f a writing error occurs, the error indicator Is
set and a negative number Is returned.

»>You can check the success Dby calling
ferror (FILE *) which return a value different

from zero If the error indicator of the stream was
set.

. &

B

Return value of fscanf

» On success, the function returns the number

of items of the argument list successfully
filled.

> This count can match the expected number of
items or be less (even zero) due to a matching
failure, a reading error, or the reach of the end-
of-file.

» If a reading error happens or the end-of-file
IS reached while reading, the proper
Indicator Is set (feof or ferror).

L 1 i

What We Will Learn

» Binary File Operations

> Open/Close
> Read/Write

>
Q% 41

Binary Files: A Different File Format

» Data in binary files are
> Not encoded in ASCII format
> Encoded in binary format

» We must use different functions to
read/write from/to binary files

» Why?

» Because, data should not be converted to/from
ASCII encoding in writing/reading the files

L % i

No Conversion to ASCII

» In text files, everything is saved as ASCII codes
» fprintf (fp, “%d”, 10)
> Saves 2 bytes in the file: ASCII ‘1" ASCII ‘0’
> 00110001 00110000
» fscanf (fp, “%d”, &i)

> Read 2 bytes from file (ASCII ‘1’ ASCII ‘0’) and convert it to base 2
which mean integer number 10

» In binary files, there is not any binary to text conversion,
everything is read/write in binary format
» int i = 10; fwrite(&i, sizeof(int), 1, £fp)
> Saves 4 bytes in the file: The code of 10 in base 2:

» 00000000 00000000 00000000 00001010
» fread(&i, sizeof(int), 1, £fp)

> Reads 4 bytes from file into | (without any conversion)

L i i

Writing to Binary Files

int fwrite(void *buf, int size, int num,
FILE *fp)

» Writes num objects from buf to £p.

» Size of each object is size.

» Returns the number of written objects.

>1f(return val < num)
> There Is an error

D » &

Reading from Binary Files

int fread(void *buf, int size, int num,
FILE *fp)

» Reads num objects from file £p to buf.
Size of each object is size.

» Returns the number of read objects.

»If (return val < num)

> There IS an error
> Or EOF -2 Check with £feof

D ;

fread:. Examples

» Reading 1 int from binary file fp
int 1;
fread(&i, sizeof(int), 1, £fp):

> This means

> Read 1 object from file £p. Save result in &1i.
The size of the object is sizeof (int)

> It reads 4 bytes from file and saves in &i
> We read an integer from file and save it in i

D p

fread:. Examples

» Read five floats
float farr[5];
fread(farr, sizeof(float), 5, £fp);

» This means

> Read 5 objects from file £p. Save result in farr.
The size of each object is sizeof (float)

» It reads 20 bytes from file and saves in farr
> We read 5 floats from file and save them in farr

L i i

fwrite: Examples

»Writing 1 char to binary file £p
char ¢ = 'A';

fwrite (&c, sizeof(char), 1, £fp);

> This means

> Write 1 object from &c Iinto file £p. Size of the
object is sizeof (char)

» It writes 1 byte from address &c and saves
result in file

> We write char ¢ to the file

L 1 i

fwrite: Examples

» Writing 4 doubles to binary file £p
double darr|[4];

fwrite (darr, sizeof (double) , 4, fp);

> This means

> Write 4 object from darzr into file £p. Size of the
objectis sizeof (double)

> It writes 32 bytes from address darr and
saves result in file
> We write the array of double to the file

L i i

Working with binary files: Example

#include <stdio.h>
struct point{
int x, vy,
};
int main (void) {
FILE *fp;
struct point p;
int 1i;
fp = fopen("c:\\point.bin",
if (fp NULL) {

printf ("Cannot create file\n");

return -1;

}

"Wb") ;

oS 5yl b S o, LQ-;T 9 05 0
S
<°

for(i = 0; i < 5; i++){
printf ("Enter X and Y: ");
scanf ("%d %d", &p.x, &p.Yy):
fwrite(&p, sizeof(p), 1, £fp);
}
fclose (fp) ;
return 0O;
}
B 2 i

Working with binary files: Example

#include <stdio.h>
struct point{

JL.A La FLY Lgl.(b:\.]a.ﬁ.i SleMs| s L;‘:Lol.;).g

int x, Yy 50&3‘95 |) Sl 00l o).:}fb JJ[S)0&5
}; D23 oo yiulos
int main(void) {

FILE *fp;

struct point p;

int 1i;

fp = fopen("c:\\point.bin", "rb");

if (fp == NULL) {
printf ("Cannot read from file\n");
return -1;

}

while (1) {
if (fread(&p, sizeof(p), 1, fp) < 1)
break;
printf ("X = %d, and Y = %d\n", p.x, p.vV)’
}
fclose (fp) ;

return O0;

) ; [

Seqguential and Random Accesses

» The access to file Is Sequential If
> If we do not move the FPP manually
> FPP advances through read and write

» The access to file s Random
> FPP advances through read and write
> We can also move the FPP manually

» Flle processing can uses Random access

Q% 52

Moving FPP, Why?

» To access randomly

» Consider very large file

» E.g., Information about all students in the university

» Change the name of 5000t student

> If 1t Is saved In text file
> Read 4999 lines, skip them and change the 5000

> If it Is saved in binary file and each object has the
same size

> Jump to the 5000t object by £seek
L s i

Moving FPP

int fseek (FILE *fp, long offset, int orgqg)

»Set FPP In the offset respect to oxg

» org.
» SEEK_ SET: start of file
» SEEK CUR: current FPP
» SEEK _END: End of file

» Returns nonzero If it Is unsuccessful,
otherwise returns zero.

D .

il 00l dhgs oo Ja p bl Sledlbl (b hb SG je S B8
(1,1)(2,2)(3,3)(4,4)(5,5)

fp = fopen("point.bin", "rb");

fread(&p, sizeof(p), 1, fp):;
printf ("%d %d\n", p.x, pP.VY);

fseek (fp, 2 * sizeof (p), SEEK SET);
fread(&p, sizeof(p), 1, fp):;
printf ("%d %d\n", p.x, pP.vV);

fseek (fp, -3 * sizeof (p), SEEK END) ;
fread(&p, sizeof(p), 1,£fp):;
printf ("%$d %d\n", p.x, p.V);

fseek (fp, 1 * sizeof(p), SEEK CUR);
fread(&p, sizeof(p), 1, fp):;
printf ("%d %d\n", p.x, pP.VY);

Q% 55

1ol 00l gl ol Jar p blas Gledlbl (0l bl SO j0 asS 58
(1,1)(2,2)(3,3)(4,4)(5,5)

fp = fopen("point.bin", "rb");

fread(&p, sizeof(p), 1, £fp):
printf ("%$d %d\n", p.x, p.y); // 11

fseek (fp, 2 * sizeof (p), SEEK SET);
fread(&p, sizeof(p), 1, £fp);
printf("$d %d\n", p.x, p.y); // 33

fseek (fp, -3 * sizeof (p), SEEK END) ;
fread(&p, sizeof(p), 1,£fp):;
printf ("%d %d\n", p.x, p.y); // 3 3

fseek (fp, 1 * sizeof(p), SEEK CUR);
fread(&p, sizeof(p), 1, fp):;
printf("%d %d\n", p.x, P.yY); // 5 5

@ "

Other FPP related functions

» Find out where Is the FPP

int ftell (FILE *fp)

» ftell returns the current FPP
> With respect to SEEK_SET

» Reset the FPP to the start of file

void rewind (FILE *fp)

2 .

Other FPP related functions

#include <stdio.h>
struct point{

}\\)%&Ygxsw&%o)masdmuﬁ

int x, y; 2 1 ead el dbals Dlate 5 0,5 o0)8
bi WS (o0 29 S8
int main (void) {

FILE *fp;

struct point p;

int num;

fp = fopen("point.bin", "rb+");

if (fp == NULL) {
printf ("Cannot read from file\n");
return -1;

}

printf ("Enter the number of points: ");

scanf ("%d", &num) ;

printf ("Enter new X and Y: ");

scanf ("%d %d", &(p.x), &(p.Vv)) -

fseek (fp, (num - 1) * sizeof(p) , SEEK_SET) ;

fwrite(&p, sizeof(p), 1, £fp):;

fclose (fp) ;

return O;

L s i

fseek In Text files

»Not very useful

» Offset counts the number of
characters including \n’

» Typical useful versions
» fseek (fp, 0, SEEK SET)

> GO to the start of file
» fseek (fp, 0, SEEK END)

> GO0 to the end of file

@ ;

Example: Reverse copy files (revisit)

File 1: kG 59,5 1, File Handler oo a5 o
3 30 s p90 RB S Sep D50 a2)
123456 7 shanl o b Jsb iSTas g lalas slaws
12 34 56 78 90 el o e Jol LB
123 456
File 2:
654 321

09 87 65 43 21
7 6 5 4 3 21

D . &

Example: Reverse copy files — v3

void reverse copy3(FILE *fpin, FILE *fpout) {

int lines, max len;

fscanf (fpin, "%d %d\n", &lines, &max len);

do{

char ¢ = fgetc(fpin);

rewind (fpout) ;
fputc(c, fpout);
}while (!feof (fpin)) ;

This is a wrong version!!!

61

]

Example: Reverse copy files — v3

void reverse copy3(FILE *fpin, FILE *fpout) {
int lines, max len;
fscanf (fpin, "%d %d\n", &lines, &max len);
do{
char ¢ = fgetc(fpin) ;
rewind (fpout) ;
fputc(c, fpout)
}while (!feof (fpin)) ;
}

The rewind function is called inside the loop, which means the

output file's pointer is set to the start before each character is
written, overwriting the previous character.

L 62 i

Example: Reverse copy files — v4

void reverse copy4 (FILE *fpin, FILE *fpout) {

int lines, max len, i, Jj, k;
fscanf (fpin, "%d %d\n", &lines, &max len);
char arr[max len];

for(i = 0; 1 < lines; i++) {
fseek (fpin, 0, SEEK SET);

fscanf (fpin, "%d %d\n", &lines, &max len);

for(j = 0; j < lines - i; j++)
fgets(arr, max len, fpin);

for(k = strlen(arr) - 1; k >= 0; k--)
fputc (arr[k], fpout) ;

14

High overhead, a lot of reading to seek!!

63

]

Example: Reverse copy files — v5

void reverse copy5(FILE *fpin, FILE *fpout) {

int lines, max len, i, j;
fscanf (fpin, "%d %d\n", &lines, &max len);
i=1;, j=1;
while (1) {
fseek (fpin, -1 * i, SEEK END);
char c¢c = fgetc(fpin)

i++;
fputc(c, fpout);
if(c == '"\n") {

i++; //this is due to Windows, \n is saved as "\r\n" !'!!

J++;
}
if(j > lines)
break;

} Good, but we have to seek from end for

each read = High overhead

64

]

Example: Reverse copy files — v6

void reverse copy6 (FILE *fpin, FILE *fpout) {

int lines, max len, i, j;
fscanf (fpin, "%d %d\n", &lines, &max len) ;
j=1;
fseek (fpin, -1, SEEK END);
while (1) {
char c = fgetc(fpin);
fputc(c, fpout);

i=2;

if(c == '\n'){
i++; // This is due to Windows
j++;

}
fseek (fpin, -1 * i, SEEK CUR);
if(j > lines)

Good enough ©

break;

. &

ot

Common Bugs and Avoiding Them

» Take care about mode Iin fopen

> w and w+: all data in file will be lost
> . you cannot write. fprint£ does not do any thing

» Take care about text or binary
> fscanf/fprintf don’t do meaningful job in binary files

» Check the successful open: £fp '= NULL
» Check EOF as much as possible.

» Close the open files.

L & i

Reference

» Reading Assignment: Chapter 11 of “C
How to Program”

67

B

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

