
Introduction

Fundamentals of Computer and Programming

Instructor: Morteza Zakeri, Ph.D. (m-zakeri@live.com)

Spring 2024

Modified Slides from Dr. Hossein Zeinali and Dr. Bahador Bakhshi

Computer Engineering Department,  Amirkabir University of Technology

Lecture 1



2

What We Will Learn

➢What is this course?

➢Computer organization

➢ Hardware

➢ Software 

➢Algorithms & Programming

➢ Algorithm

➢ Programming Language 

➢Solving problems 



3

This Course 

➢Introduction to Computer & Programming

How to use computers to solve 

our problems

➢The problems are computational problems 



4

This Course (cont’d)

➢What we learn 

➢ Overall overview of computer organization 

➢ Problem solving steps
➢ Algorithm design

➢ A programming language: the C

➢What we don’t learn

➢ In depth computer hardware/software details

➢ Most advanced algorithms

➢ System programming using C

➢ Other programming languages: Java, PHP, … 

CA, OS, …

Alg, DS, …

OS, …

AP, IE, …



5

This Course (cont’d)

➢Steps to learn a new language (English, 

French, … C, Java, Python, …)
➢ Present: what is the new language (course slide)

➢ Practice: how to use the new language in practice (the example)

➢ Produce: use the language to create a new things (Lab, HW)

➢Learning Programming Language

➢ is not a pure theoretical course (mathematics, …) 

➢ Reading, reading, reading, ….

➢ is a practical course needs the product step

➢ Class, Reading, programming, programming, programming,…



6

This Course (cont’d)

➢Course materials

➢ Lecture notes (slides) are in (simple) English

➢ Available in the course homepage: 

https://m-zakeri.github.io/CP/

Textbook:

➢ C: How to Program 9th Edition (2022)

➢ https://deitel.com/c-how-to-program-9-e/

➢ https://github.com/pdeitel/CHowToProgram9e

https://m-zakeri.github.io/CP/
https://deitel.com/c-how-to-program-9-e/
https://github.com/pdeitel/CHowToProgram9e




8

Who Am I?

➢Morteza Zakeri

➢ Ph.D. in Computer Engineering

➢Software Engineering Major

➢Iran University of Science and Technology

➢ Interested in intelligent software engineering, 

compilers, refactoring, and program analysis.

➢ More info: https://m-zakeri.github.io

https://m-zakeri.github.io/


9

How Can You Find Me?

➢At the department

➢ After each class session.

➢Email:

➢ m-zakeri@live.com

➢Skype ID:

➢ zakerim2012

➢ Telegram ID: 

➢ @mztel



10

Grading policy and Extra Classes

➢ Five major parts

I. Midterm 20% (4 of 20)

II. Final 30% (6 of 20) 

III. Homework   15% (3 of 20)

IV. Project         15% (3 of 20)

V. Lab 20% (4 of 20)

➢Lab + TA Classes

➢Lab: A practical class with writing reports, Mandatory

➢TA: More details, practical aspects, solving HW, etc. 

➢ At least 4 sessions must be attended.

➢Homework is not accepted after solutions.



11

Who Will Pass the Course?

➢Get 4 out of 10 marks from both exams

➢Get 8 out of 17 marks from the exams, lab, and the 

project

➢ The homework grades will not pass you!

➢ There are bonuses in different parts of the course

➢ Only for those that have an acceptable correlation 

between homework and other parts of the course!



The Normal Distribution

Typically your grades follows …



13

Any Question?!

➢ Is CE a good dep. of the university?! Yes ☺

➢ Is AUT really a top university?! Yes ☺

➢Will I be wealthy as a Computer Engineer?! Yes ☺

➢Do I need to learn C?! Yes!!! ☺

➢ Is CE a simple and easy-going? No ☺

➢ Is the internet free at the university?! Yes ☺

➢ Is lunch free?! No 

➢…



14

What We Will Learn

➢What is this course?

➢Computer organization

➢ Hardware

➢ Software

➢Algorithms & Programming

➢ Algorithm

➢ Programming Language 

➢Solving problems



15

Computers: The Computing Machines

➢Computers classification:
➢ Supercomputers

➢ Weather forecast, Large scale simulation, …  

➢ Mainframe computers

➢ The servers in large companies: Google, …

➢ Midsize computers

➢ The servers in CE department 

➢ Micro computers (also called PC)

➢ Our laptop

➢ Pocket PCs

➢ Our mobile phones 



16

Computers

➢Computers are anywhere, anytime. Why?
➢ They can solve many different problems. How?

➢Computers are programmable machines capable of 

performing calculations (computation)

➢ Changing program leads to different operation

➢Special-purpose machines

➢ Calculators, game-playing machines, …

➢General-purpose computers

➢ Personal computers, notebooks, …



17

Data Units

➢Computers are digital machines

➢Data processed or stored in computer is 

represented as two-state values 

➢ either 1 or 0 - BInary digiTs (BIT)

➢ 1 Byte = 8 bits

➢ 1 kilobyte (KB) = 1024 bytes

➢ 1 megabyte (MB) = 1024 kilobyte

➢ 1 gigabyte (GB) = 1024 megabyte



18

Data Representation/Coding

➢How to represent our data by 0-1?

➢In other word, there are some 0 and 1 in the 

computer, what is the meaning?

Coding (Representation Standards)

➢Major (common) representations (coding)

➢ Integer numbers: 1, 1000, -123, 0, …

➢Floating point numbers: 1.1, 11.232, -12.23, …

➢Characters: ‘A’, ‘ب’, ‘@’, …



19

Integer Number Coding 

➢There are different representations
➢You will learn them (in details) in other courses 

(e.g. Computer Architecture)

➢One of the (simple) coding is sing-magnitude 
coding
➢ If we have n bit for coding integers

➢ The left bit (the MSB): sign

➢ n-1 bits: magnitude

➢E.g., 8 bit for coding

➢4  → 00000100 -4 → 10000100

➢0  → 00000000 -0 → 10000000 :-P :-D



20

Floating Point Number Coding 

➢Usually, this coding pattern (IEEE 754)

➢You will see all details in other courses

➢Two precisions

➢ Single precision

➢exponent: 8 bit, fraction: 23 bit 

➢ Double precision:

➢exponent: 11 bit, fraction: 52 bit 

https://ieeexplore.ieee.org/document/4610935


21

Character Coding

➢Common character encoding: ASCII
➢ Character ASCII Code Binary (8 bit) 

➢ ‘0’ 48 00110000

➢ ‘A’ 65 01000001

➢8 bits can represent 256 characters; but, 

➢ There are so many characters (Farsi, Arabic, …)

➢ Solution: UTF (Variable length coding)

➢ 0xxxxxxx: 1 byte code

➢ 110xxxxx 10xxxxxx: 2 byte code

➢ …



22

Computer Organization 

➢Major Components 

➢ Hardware 

➢ Physical devices that are wired and performs basic
operations

➢ Software

➢ Set of programs that run on the hardware 

➢Hardware 

➢ CPU (Central Processing Unit)

➢ Main Memory 

➢ Secondary Storage

➢ Input/output 



23

Computer Organization 



24

Computer Organization: CPU

➢ALU (Arithmetic Logic Unit)

➢ Performs mathematic calculations

➢ Makes decision based on conditions

➢Special Floating Point processors

➢Set of working area: Registers

➢Control Unit

➢ Controls system operation 

➢Operation and operands are required

➢ Which are provided by instructions in the main memory



25

Computer Organization: Main Memory

➢Ordered sequence of cells (memory cells)

➢Directly connected to CPU

➢All programs must be in main memory 

before execution

➢When power is turned off, 

Main memory is cleared

Volatile memory 



26

Computer Organization: Secondary Storage

➢Provides permanent storage for 

information

➢Examples of secondary storages:

➢ Hard Disks

➢ Floppy Disks

➢ Flash/Cool/USB Disks

➢ CD/DVD

➢ Tapes



27

Computer Organization: Input Devices

➢Devices that feed data and programs into 

computers

➢Examples:

➢ Keyboard

➢ Mouse

➢ Network Interface Card

➢ Joystick

➢ Microphone



28

Computer Organization: Output Devices

➢Devices that computer uses to generate 

results/outputs

➢Examples:

➢ Printer

➢ Monitor

➢ Speaker

➢ Network Interface Card



29

Computer Organization: Software

➢What can do the Hardware?

➢ No useful operation, if there isn’t any software

➢ We should tell/plan/program it to do something

➢Software

➢ Programs which are designed for a specific task

➢Major Software types

➢ Operating System

➢ Libraries

➢ Applications (To be studied in this course) 



30

Computer HW & SW Organization



31

Computer Organization: OS

➢OS 

➢ Manages the hardware

➢ HW is a shared resources

➢ Application programmers can easily use HW

➢ Without knowing the HW details

➢Common operating systems 

➢ Unix, Windows (XP, Vista, 8, 10, 11), Linux, …



32

Computer Organization: Libraries

➢The libraries provide the most common 

functionalities 

➢In mathematic programs

➢ sin(x), cos(x), matrix multiplication/inversion

➢In graphical programs

➢ Draw a line/cycle, set color, new window

➢In multimedia programs

➢ Open/close files, jump, … 



33

Computer Organization: Applications

➢An application program 

➢ Users use them to do some specific things

➢ Without knowing the details of the computer

➢Common application programs 

➢ Word, Internet Explorer, FireFox, Messengers 

➢Common applications in mathematic: 

➢ Matlab, Mathematica, Maple, GAMS, AIMMS



Programming Execution Phases

➢Program is loaded from secondary storage 

to main memory by OS (loader)

➢OS gives the control to the program

➢Instructions run

➢Required inputs are got from input device & 

saved in main memory & used by CPU

➢Result is saved in main/secondary memory 

or sent to output devices

34



35

Instruction Execution Steps 

➢Basic steps in running instructions 

➢Read instruction from main memory: fetch
➢ “000110…011”

➢Decode the instruction 
➢ add 1 to memory location XYZ save result in ABC

➢Get required operands from main memory
➢ Read value of location XYZ to temp1

➢Run the instruction 
➢ temp2 = temp1 + 1

➢Save the result
➢ Write temp2 in memory location ABC



How to be general purpose machine? 

➢Hardware is simple & general purpose

➢ Only a small set of basic instructions (+, -, *, …) are 

implemented by hardware 

➢Complex tasks (e.g. average, sort, …) are 

programmed by software

➢ Basic instruction and high-level complex instructions

➢Software is translated to the basic instructions

➢ Hardware can run it

➢This is the way that we “program” computers

36



Reference 

➢Reading Assignment: Chapter 1 and 
Appendix C of “C How to Program”

➢Learn more about computer hardware 

➢“How Computers Work”

37



38

What We Will Learn

➢What is this course?

➢Computer organization

➢ Hardware

➢ Software 

➢Algorithms & Programming

➢ Algorithm

➢ Programming Language 

➢Solving problems



Algorithm??!!! 

➢Hardware do the basic operations

➢We want to solve a real problem by computers

➢ Take average, Sort, Painting, Web, Multimedia, …

➢We need a solution that 

➢ Specifies how the real (complex) problem should 

be solved step-by-step using the basic operations

➢The solution is the “Algorithm” of the problem

39



40

Algorithms (cont’d)

➢Common Sense (in computer science):

1) The way to do some things

2) An abstract way to solve a problem 

➢Formal Definition: 

“An algorithm is a finite list of well-defined

instructions for accomplishing some task that, 

given an initial state, will proceed through a well-

defined series of successive states, possibly 

eventually terminating in an end-state”



41

Algorithms: Examples

➢ Finding Common Divisor

➢ Finding 2 largest element in a set

➢ Finding shortest path in a graph

➢ Searching in a sorted array 

➢ Sorting a set

➢ Combining 2 sorted set in a sorted set

➢ Solving an equation 

➢ Compression algorithms

➢ Cryptography algorithms

➢ ….

al-Khwarizmi



42

Algorithms: Description

➢Algorithms are the problem solving steps in our 

mind!!!

➢How can we document it (don’t forget it)?

➢How can we explain/teach it to others peoples?

➢How can we explain it to computers?

➢We need some methods to describe algorithms!

➢Flowcharts

➢Pseudo-codes

➢Codes / Programs



43

Algorithms: Description (cont’d)

➢Flowcharts:

➢ Schematic representation

➢Example:

calculate 12 + 22 + ... + n2



44

Algorithms: Description (cont’d)

➢Pseudo-code
➢ A sequence of English and mathematical statements

Algorithm: calculate 12 + 22 + ... + n2

Input: n

Output: sum

sum  0

i  1

Repeat the following three steps while i  n:

sq  i * i

sum  sum + sq

i  i + 1



45

Algorithms: Description (cont’d)

➢Flowcharts and Pseudo-code are for humans 

not for computer

➢ Computer cannot run them

➢What can computer run?

➢ Instructions in main memory 

➢ The instructions are in “011100001…” format

➢ To use computers 

➢ We should describe your algorithm in “01” format

➢ ?????  



46

What We Will Learn

➢What is this course?

➢Computer organization

➢ Hardware

➢ Software 

➢Algorithms & Programming

➢ Algorithm

➢ Programming Language 

➢Solving problems



47

Programming Language

➢ Programming languages are the tools to describe your 

algorithms for computers

➢ Software is developed by programming languages

➢ New languages which is understandable by computers

➢ Human languages are not used. Why?

➢ When algorithm is described with a programming language

➢ It cannot be run on computer directly if the languages is not 

011001001 

➢ There are some other programs that translate the programming 

language to “010…”

➢ The output “0101…” can run on computers ☺☺



48

Programming Language: Machine Level

➢Computer’s native language 

➢What is saved in the main memory

➢The processor architecture specifies the 

format of 01s, machine depended

➢Example 

➢ Add two numbers: 00100111 1010 0101

➢Completely incomprehensible to (most) 

people



49

Programming Language: Assembly 

➢ Programming based on mnemonics

➢ There are one-to-one mapping between machine 
language and assembly mnemonics

➢ Example

load  r1, [4000] ; read content of address 4000

add   r1, 1 ; add 1 to CPU register r1

store [5000], r1 ; save the result in location 5000



50

Programming Language: High Level

➢Easy for programming, English-like keywords

➢More similar to natural languages 

➢There isn’t one-to-one relation between high 

level statements and machine level statements

➢Example: C, C++, Pascal, Java, PHP, Python,… 

➢Example:

int xyz;

int abc;

abc = xyz + 1;



Translation of High Level Languages

➢Two types of translators

➢ Interpreter (مفسر)
➢ Compiler (مترجم)

➢Interpreter

➢ Checks and runs program lines one-by-one

➢ Easy, slow, and we need the interpreter

➢Compiler

➢ Check all lines, creates executable output file

➢ Fast and Stand alone program 

51



52

Compiler

➢Compiler 

➢ A set of computer programs do the Compilation

➢ Preprocessor: Prepare file for compiler 

➢ Compiler: Create assembly code

➢ Assembler: Convert assembly code to binary code

➢ Linker: Collect all required binary files (from libraries) 
into a single loadable file

➢ Each language has its own compiler

➢Usually compiler do all above steps, you just 
compile the file and get a executable file



53

Building & Running Program

Source code Assembly 

code

Compiler Assembler

Object code

Linker 

LibrariesExecutable  

code

Loader

Operating 

System

Running



54

What We Will Learn

➢What is this course?

➢Computer organization

➢ Hardware

➢ Software 

➢Algorithms & Programming

➢ Algorithm

➢ Programming Language 

➢Solving problems using computers



55

Solving Problems

➢How to solve problems using computers

➢ Develop a program for it

➢Steps

➢ Analysis: Input, output

➢ Algorithm Design

➢ Coding 

➢ Compile → program

➢ Execution → test

➢ Documentation 



56

Solving Problems: Analysis 

➢Problem solving process consists of 

Input → Algorithm → Output

➢Determine what information is available 

as the input to your algorithm

➢Determine what information is desired 

as the output from your algorithm

➢What needs to be done on the input to 

produce the output? Algorithm



57

Solving Problems: Algorithm 

➢Determine a series of steps that transforms 
the input data into the output results

➢Find a solution

➢Break down the steps 

➢Find all the special cases that the must be 
handled

➢If necessary modify or redesign your series 
of steps so that all special cases are handled

➢Verify (test) your algorithm



58

Solving Problems: Coding 

➢Describe your algorithm by a programming 

language 

➢You must code exactly in the programming 

language syntax

➢Compiler itself is a program it isn’t a human

➢ It is not intelligent 

➢ It just does the steps of the compiling algorithm

➢ It does not understand what do you mean!!!



59

Solving Program: Execution 

➢Compiler generated the executable file 

➢Run the executable code

➢ First try to use simple 

➢ Give the input

➢ Get results

➢ Then try larger and complex inputs



60

Errors in Solving Problems

➢ Compile / Syntax error: Compiler does not recognize your 
code

➢ Link error: Linker cannot find the required libraries

➢ Runtime error: Program does not run correctly

➢ Example: Division by zero

➢ Logical Error: Program does not produce the expected result

➢ It is called bug

➢ No one (compiler, assembler) except debugger can help you 

➢Why error?

➢ You do not understand and analysis the problem correctly 

➢ You do not develop a right algorithm for the problem

➢ You have mistakes in your coding



61

Debugging

➢ The process of resolving the errors 

➢ Example: A program to divide two numbers

➢ Compile/Syntax error

➢ Compiler tells where it is → check syntax 

➢ Link error

➢ Compiler tells what it is → check syntax & libraries

➢ Run time error

➢ Try to find it → use debugger to run step-by-step, print debug messages

➢ Check syntax & semantic of the line

➢ Logical error

➢ Try to find it → use debugger to run step-by-step, print debug messages

➢ Check syntax & semantic of program

➢ Revise the algorithm 



62

Building & Running Program

Source code Assembly 

code

Compiler Assembler

Object code

Linker 

Libraries
Executable  

code

Loader

Operating 

System

Running

Algorithm

Syntax Error

Link Error
Execution 

Error

Logical 

Error



Desired Features of Programs 

➢ Integrity (درستي) 
➢ Correctly solve the problem

➢ Clarity (وضوح) 
➢ Easy to read

➢ Simplicity (سادگي) 

➢ Easy to understand 

➢ Efficiency (كارايي) 
➢ Speed and memory

➢ Modularity (پيمانهاي) 
➢ Break down of a large task

➢ Generality (عموميت)
➢ Tunable by input as much as possible 

63



64

Summary

➢Computer organization

➢ Hardware and Software

➢Algorithm & Program

➢ What is the difference between them

➢How to solve a problem using computer

➢ Steps

➢Errors in problem solving

➢What is the next: Design algorithm → Program



Reference 

➢Reading Assignment: Chapter 1 of “C How 
to Program”

65


