Lecture 1
Introduction

Fundamentals of Computer and Programming

Instructor: Morteza Zakeri, Ph.D. (m-zakeri@live.com)
Spring 2024

Modified Slides from Dr. Hossein Zeinali and Dr. Bahador Bakhshi

Computer Engineering Department, Amirkabir University of Technology

B 44|

What We Wil Learn

»\What is this course?

» Computer organization
> Hardware
> Software

» Algorithms & Programming
> Algorithm
> Programming Language

» Solving problems

Q% 2

This Course

» Introduction to Computer & Programming

How to use computers to solve
our problems

» The problems are computational problems

B 3 i

This Course (cont'd)

»What we learn
> Overall overview of computer organization

> Problem solving steps

> Algorithm design
» A programming language: the C

>What we don’t learn m

> In depth computer hardware/software details

> Most advanced algorithmsm
> System programming using C “m

> Other programming languages: Java, PHP, ...
@ 4 S

This Course (cont'd)

» Steps to learn a new language (English,
French, ... C, Java, Python, ...)

> Present: what is the new language (course slide)
> Practice: how to use the new language in practice (the example)
> Produce: use the language to create a new things (Lab, HW)

» Learning Programming Language
> is not a pure theoretical course (mathematics, ...)

» Reading, reading, reading,

> IS a practical course needs the product step
» Class, Reading, programming, programming, programming,...

B 5 i

This Course (cont'd)

>

Course materials
> Lecture notes (slides) are in (simple) English
> Available in the course homepage:
https://m-zakeri.github.io/CP/
Textbook:
> C: How to Program 9t Edition (2022)

> https://deitel.com/c-how-to-program-9-e/
» https://github.com/pdeitel/CHowToProgram9e

-7 Grts R ORRT #
7 s S G

b4 S pemis
HOW TO PROGRAM _

IIIIIII

B

ppppppppppppp

-
LLLLLLLLL
EEEEEEEEEEEE

https://m-zakeri.github.io/CP/
https://deitel.com/c-how-to-program-9-e/
https://github.com/pdeitel/CHowToProgram9e

with Case Studies Introducing Applications Programmin
by Paul Deitel & Harvey Deite

1. Introduction to Computers and C
Intro o Hardware, Software & Intemet,

Test-Dnive Microsoft Visual Studio, Apple
Keode, GMU gee & GNU gec in Docker

2, Intro to C Programming
Input, Output, Types, Anthmetic,
Cecision Making, Secure C

3. Structured Program
Development
Algaorthm Development, Problem
salving, if, iffelse while, Secure C

4. Program Control
for, dofwhile, switch, break,
continue, Logical Operators, Secure C

5. Functions
Custom Functions, Simulation,
Random-MNumber Generation,
Enumerations, Function Call and Return
tdechanism, Recursion, Recursive
Factorial, Recursive Fibonacci, Secure C

+*

C is one of the world's most popular
and senior programming languages

+ CI8/CI| standards

+ Topical, innovative presentation

+ Rich coverage of fundamentals

+ Problem-solving/developing algorithms

+ 20+ fun computer-science, data-science
and artificial-intelligence case studies
show Cas it’s intended to be used—
some are fully implemented, some are
partially implemented and some re-
quire students to do online research
147 complete working programs

350+ integrated self-check exercises
with answers

+ 445 end-of-chapter exercises/projects
+ Use with Windows®, macOS®, Linux®
+ Visual C++®, Xeode® and GNU™ gec

+*

+*

C How to Program, Ninth Edition

6. Arrays
One- & Two-Dimensional Arrays, Passing
Arrays to Functions, Searching, Binary
Search Yisualization, Sorting, Secure C

7. Pointers
Pointer operators &and *,
Pass-By-Yalue vs. Pass-By-Reference,
Array and Pointer Relationship, Secure C

8. Characters and Strings
C Standard Library String- and
Character-Processing Functions, Secure C

9. Formatted Input/Output
scantand printf formatting, Secure C
10. Structures, Unions, Bit
Manipulation and Enumerations
Creating Custom Types with structs
and unions, Bitwise Cperators,
Enumeration Constants, Secure C

11. File Processing
streams, Text and Binary Files, CSV Files,
Sequential and Random-Access Files,
Secure C

Analysis of algorithms with Big O

Enhanced security and data science
coverage as per ACM/IEEE 2020
curricula recommendations

Use free open-source libraries and tools

+ Real-world examples and data

+ Traditional or “flipped” classrooms

+ Secure C Programming, privacy, ethics
« Case studies in systems programming

and applications programming

+ Think like a developerwith GitHub®,

open-source, StackOverflow and more

PART 4 (Advanced)
Data Structures and
Blgorithms

12, Data Structures
Dynamic Memaory Allocation, Lists,
Stacks, Queues & Binary Trees, Secure C

13. Computer-Science Thinking:
Sorting Algorithms and Big O
Insertion Sort, Selection Sort, Visualizing
tderge Sort, Additional Algorithms
including Quicksortin the Exercises

PART 5 (Advanced)
Preprocessor and Other Toplcs

14. Preprocessor
#include, Conditional Compilation,
tdacrosfArguments, Assertions, Secure C

15. Other Topics
Wariable-Length Argument Lists,
Command-Line Arzuments, kultiple-
Source-File Programs, extern, exit/
atexit, calloc/realloc, goto,
MNumeric Literal Suffixes, Signal Handling

&. Operator Precedence
B. ASCII Character Set
C. Multithreading/Multicore and
Other CIH/C18 Topics
D. Intro to Object-Criented Programming

E. Mumber Systems
F-H. Using the Yisual Studio,
GNU gdb and Xcode Debuggers

Emphasis on visualization

Static code analysis tools

Performance, multithreading, multicore
Questions? deitel@deitel.com

Updates and errata:
https://deitel. com/chtp9

Fand Systems Programming

Systems Software
* Building Your Own Computer
+ Building ¥ our Crwn Compiler with
Infix and Postfix Motation

Embedded Systems Programming
+ YWebots 30 Robotics Simulator

Performance: Threading/Multicore

Blgorithm Development
+ Counter-Controlled Iteration
+ Sentinel-Controlled Iteration
+ MNested Control Statements

Random-Number Simulation
+ Building a Casino Game
+ Card ShufflingfDealing with Card Images
+ The Tortoise and the Hare Race

Intro to Data Science
+ Data Analysis: Mean, Median & Mode

Direct-Access File Processing
+ Transaction-Processing System

Visualizing Searching & Sorting

Artificlal Intelligence/Data Science
+ Machine Learning, GNU Scientific
Library, Plotting with gnuplot, CSV Files
+ MLP: WhoWrote Shakespeare’s YWorks?

Game Programming with raylib
+ SpotOn and Cannon Games

Security VYia Cryptography
+ Secret-Key & RSA Public-Key Crypto

Visualization with raylib
+ Law of Large Numbers Animation

Multimedia: Audio & Animation

‘Web Services, Mashups, Cloud
+ Accessing Web Services with libcurl;
OpenWeathertap |SON Results
+ Rapid Applications Development with
YWeb-Service Mashups

Who Am |?

» Morteza Zakeri

> Ph.D. in Computer Engineering
> Software Engineering Major
> Iran University of Science and Technology

> Interested in intelligent software engineering,
compilers, refactoring, and program analysis.

> More info: https://m-zakeri.qithub.io

B

https://m-zakeri.github.io/

How Can You Find Me?

» At the department
> After each class session.

» Email:
> m-zakeri@live.com

» Skype ID:
> zakerim2012

> Telegram ID:
> @mztel

B 9

Grading policy and Extra Classes

» Five major parts

l. Midterm 20% (4 of 20)

Il. Final 30% (6 of 20) “
Ill. Homework 15% (3 of 20) .

IV. Project 15% (3 of 20) ‘
V. Lab 20% (4 of 20)

®m Midterm = Final = Homework Project m Lab

»Lab + TA Classes
»Lab: A practical class with writing reports, Mandatory
» TA: More details, practical aspects, solving HW, etc.
> At least 4 sessions must be attended.
»Homework is not accepted after solutions.

L 1 i

Who Will Pass the Course?

> Get 4 out of 1

» Get 8 out of -
project

O mar

[/ mar

ks from both exams

kS from the exams, lab, and the

» The homework grades will not pass you!

» There are bonuses in different parts of the course

» Only for those that have an acceptable correlation
between homework and other parts of the course!

B

: &

The Normal Distribution

Typically your grades follows ...

!

0.3

0.2

- 34.1%| 34.1%

0.1

0.0

Any Question?!

> |s CE a good dep. of the university?! Yes ©

» Is AUT really
» Will | be wea
» Do | need to

a top university?! Yes ©

thy as a Computer Engineer?! Yes ©

earn C?! Yes!ll ©

» |s CE a simple and easy-going? No ©

> |s the internet free at the university?! Yes ©

s lunch free?! No ®

>
>
B

; &

What We Wil Learn

>

» Computer organization
> Hardware
> Software

>

>
>

14

B

Computers: The Computing Machines

» Computers classification:
> Supercomputers
» Weather forecast, Large scale simulation, ...
> Mainframe computers
» The servers in large companies: Google, ...
> Midsize computers
» The servers in CE department
> Micro computers (also called PC)
» Our laptop
> Pocket PCs
» Our mobile phones

L s i

Computers

» Computers are anywhere, anytime. \Why?
> They can solve many different problems. How?

» Computers are programmable machines capable of
performing calculations (computation)

> Changing program leads to different operation

» Special-purpose machines

> Calculators, game-playing machines, ...

» General-purpose computers

> Personal computers, notebooks, ...

L ' i

Data Units

» Computers are digital machines

» Data processed or stored in computer is
represented as two-state values
> either 1 or O - Blnary digiTs (BIT)

>]
>]
>

>

Byte = 8 bits

kilobyte (KB) = 1024 bytes
megabyte (MB) = 1024 kilobyte
gigabyte (GB) = 1024 megabyte

B

17

Data Representation/Coding

» How to represent our data by 0-17

> In other word, there are some 0 and 1 in the
computer, what is the meaning?

Coding (Representation Standards)

» Major (common) representations (coding)
> Integer numbers: 1, 1000, -123, 0, ...
> Floating point numbers: 1.1, 11.232, -12.23, ...
> Characters: ‘A, ', '@/, ...

L s i

Integer Number Coding

» There are different representations

> You will learn them (in details) in other courses
(e.g. Computer Architecture)

» One of the (simple) coding is sing-magnitude
coding
> If we have n bit for coding integers
> The left bit (the MSB): sign
> n-1 bits: magnitude
> E.qg., 8 bit for coding
>4 - 00000100 -4 = 10000100
>0 - 00000000 -0 - 10000000 :-P :-D

L i i

Floating Point Number Coding

» Usually, this coding pattern (IEEE 754)

sign exponent fraction
[

I

i 1

o +f f

> You will see all detalils in other courses

» Two precisions
> Single precision
»>exponent: 8 bit, fraction: 23 bit
> Double precision:
»exponent: 11 bit, fraction: 52 bit

2 :

https://ieeexplore.ieee.org/document/4610935

Character Coding

» Common character encoding: ASCI|

> Character ASCII Code Binary (8 bit)
>0 48 00110000
> ‘A 65 01000001

» 8 bits can represent 256 characters; but,
> There are so many characters (Farsi, Arabic, ...)

> Solution: UTF (Variable length coding)
> Oxxxxxxx: 1 byte code
> 110xxxxx 10xxxxxx: 2 byte code
> ...

L 2 i

Computer Organization

» Major Components
> Hardware

» Physical devices that are wired and performs basic
operations

> Software
» Set of programs that run on the hardware

» Hardware
» CPU (Central Processing Unit)
> Main Memory
> Secondary Storage
> Input/output

: &

B

Computer Organization

Central Processing Unit (CPU)
Control Unit (CU)

Instruction Register (IR)

Program Counter (PC)

Accumulator (ACC)

Arithmetic Logic Unit (ALU)

Secondary Storage

Input Device

Output Device

Computer Organization: CPU .

......
.....
...,
.....
.....
il

» ALU (Arithmetic Logic Unit)

> Performs mathematic calculations
> Makes decision based on conditions =

» Special Floating Point processors

=2

» Set of working area: Registers

» Control Unit
> Controls system operation

» Operation and operands are required
> Which are provided by instructions in the main memory

L 2 i

Computer Organization: Main Memory

» Ordered sequence of cells (memory cells)
» Directly connected to CPU

» All programs must be in main memory
before execution

»When power is turned off,
Main memory is cleared
Volatile memory

25

B

Computer Organization: Secondary Storage

» Provides permanent storage for

iInformation

» Examples of secondary storages:

> Hard Disks

> Floppy Disks

> Flash/Cool/USB Disks
> CD/DVD

> Tapes

B

. &

Computer Organization: Input Devices

» Devices that feed data and programs into
computers

» Examples:
> Keyboard
> Mouse
> Network Interface Card
. ~
> Joystick
> Microphone \ 2

27

B

Computer Organization: Output Devices

» Devices that computer uses to generate
results/outputs

» Examples:
> Printer
> Monitor
> Speaker =
> Network Interface Card

28

B

Computer Organization: Software

»\What can do the Hardware?

> No useful operation, if there isn’'t any software
> We should tell/plan/program it to do something

» Software
» Programs which are designed for a specific task

» Major Software types
> Operating System
> Libraries
> Applications (To be studied in this course)

L 2 i

Computer HW & SW Organization

Computer Organization: OS

I 4ON

> Manages the hardware

> HW is a shared resources
> Application programmers can easily use HW
> Without knowing the HW details

» Common operating systems
> Unix, Windows (XP, Vista, 8, 10, 11), Linux, ...

L o1 i

Computer Organization: Libraries

» The libraries provide the most common
functionalities

» In mathematic programs
> Sin(x), cos(x), matrix multiplication/inversion

»In graphical programs
> Draw a line/cycle, set color, new window

» In multimedia programs
> Open/close files, jump, ...

@ ;

Computer Organization: Applications

» An application program
> Users use them to do some specific things

> Without knowing the details of the computer

» Common application programs

> Word, Internet Explorer, FireFox, Messengers

» Common applications in mathematic:
> Matlab, Mathematica, Maple, GAMS, AIMMS

L 5 i

Programming Execution Phases

»Program is loaded from secondary storage
to main memory by OS (loader)

» OS gives the control to the program
» Instructions run

» Required inputs are got from input device &
saved in main memory & used by CPU

» Result is saved in main/secondary memory
or sent to output devices

L o i

Instruction Execution Steps

» Basic steps in running instructions

» Read instruction from main memory: fetch
> “000110..011”

» Decode the instruction

» add 1 to memory location XYZ save result in ABC

» Get required operands from main memory
> Read value of location XYZ to templ

> Run the instruction
> temp2 = templ + 1

» Save the result
> Write temp2 in memory location ABC

2 ;

How to be general purpose machine?

» Hardware is simple & general purpose

> Only a small set of basic instructions (+, -, *, ...) are
Implemented by hardware

» Complex tasks (e.g. average, sort, ...) are
programmed by software

> Basic instruction and high-level complex instructions

» Software is translated to the basic instructions
» Hardware can run it

» This is the way that we “program” computers

D . &

Reference

> Reading Assignment: Chapter 1 and
Appendix C of “C How to Program”

> Learn more about computer hardware

> "How Computers Work”

37

B

What We Wil Learn

>

>

>
>

» Algorithms & Programming
> Algorithm
>

>

Q%P 38

Algorithm?7?11

» Hardware do the basic operations

» We want to solve a real problem by computers
> Take average, Sort, Painting, Web, Multimedia, ...

»\We need a solution that

> Specifies how the real (complex) problem should
be solved step-by-step using the basic operations

» The solution is the “Algorithm” of the problem

L s i

Algorithms (cont'd)

»Common Sense (in computer science):
1) The way to do some things
2) An abstract way to solve a problem

» Formal Definition:

“An algorithm is a finite list of well-defined
instructions for accomplishing some task that,
given an initial state, will proceed through a well-
defined series of successive states, possibly
eventually terminating in an end-state”

. &

B

Algorithms: Examples

» Finding Common Divisor
» Finding 2 largest element in a set

» Finding shortest path in a graph
» Searching in a sorted array

» Sorting a set | " aI-Kwaimi
» Combining 2 sorted set in a sorted set

» Solving an equation

» Compression algorithms

» Cryptography algorithms

> ...

D ; &

Algorithms: Description

» Algorithms are the problem solving steps in our

>
>
>

mind!!!

ow can we document it (don’t forget it)?
ow can we explain/teach it to others peoples?
ow can we explain it to computers?

» \We need some methods to describe algorithms!
» Flowcharts

> Pseudo-codes

» Codes / Programs

B

; &

Algorithms: Description (cont'd)

» Flowcharts:
> Schematic representation

D— Input / output

Lo/

sum « 0
j < 1

No
— Processing step

<> Decision - _Yes
Sq 171
sSum <« sum + sq
» Example: i+ 1

calculate 12 + 22 + ... + n? / sum /

) ;

Algorithms: Description (cont'd)

» Pseudo-code
> A sequence of English and mathematical statements

Algorithm: calculate 12 + 22 + ... + n?
Input: n
Output: sum
sum « 0
| < 1
Repeat the following three steps while i < n:
sq<«i™i
sum <« sum + sq

| < i+ 1

44

B

Algorithms: Description (cont'd)

» Flowcharts and Pseudo-code are for humans
not for computer

» Computer cannot run them

» What can computer run?
> Instructions in main memory
> The instructions are in “011100001..." format

> To use computers
» We should describe your algorithm in “01” format

L i i

What We Wil Learn

>

>

>
>

» Algorithms & Programming
>
> Programming Language

>

)]

Programming Language

» Programming languages are the tools to describe your
algorithms for computers

> Software is developed by programming languages

» New languages which is understandable by computers
» Human languages are not used. Why?

» When algorithm is described with a programming language

> It cannot be run on computer directly if the languages is not
011001001 ®

> There are some other programs that translate the programming
language to “010...”

> The output “0101...” can run on computers ©©

L 47 i

Programming Language: Machine Level

» Computer’s native language
»What is saved in the main memory

» The processor architecture specifies the
format of 01s, machine depended

» Example
» Add two numbers: 00100111 1010 0101

» Completely incomprehensible to (most)
people

) ;

Programming Language: Assembly

» Programming based on mnemonics

» There are one-to-one mapping between machine
language and assembly mnemonics

Assembly Language Machine Language

LOAD 100100
STOR 100010
MULT 100110
ADD 100101
SUB 100011
» Example
load rl, [4000] : read content of address 4000
add r1, 1 ; add 1 to CPU register r1

store [5000], rl : save the result in location 5000

L s i

Programming Language: High Level

» Easy for programming, English-like keywords

» More similar to natural languages

» There isn’'t one-to-one relation between high
level statements and machine level statements

» Examp
» Examp

e: C, C++, Pascal, Java, PHP, Python,...

e.

int xyz;

int abc;

abc = xyz + 1;

B

. &

Translation of High Level Languages

» Two types of translators
> Interpreter (o)

> Compiler (> yw)

» Interpreter
> Checks and runs program lines one-by-one
> Easy, slow, and we need the interpreter

» Compiler
> Check all lines, creates executable output file
> Fast and Stand alone program

L 1 i

Compiler

» Compiler
> A set of computer programs do the Compilation
> Preprocessor: Prepare file for compiler
> Compiler: Create assembly code
> Assembler: Convert assembly code to binary code

> Linker: Collect all required binary files (from libraries)
Into a single loadable file

> Each language has its own compiler

» Usually compiler do all above steps, you just
compile the file and get a executable file

L 5 i

Building & Running Program

Source code

Running J*

Compiler Assembler

o Assembly " Object code
code
Linker
Loader ExeCUtab|e < v L|brar|es
1 code
Operating
System

53

What We Wil Learn

» Solving problems using computers

Q%P 54

Solving Problems

» How to solve problems using computers
> Develop a program for it

» Steps
> Analysis: Input, output
> Algorithm Design
> Coding
> Compile = program
> Execution - test
> Documentation

55

B

Solving Problems: Analysis

»Problem solving process consists of
Input = Algorithm - Output

» Determine what information is available
as the input to your algorithm

»Determine what information is desired
as the output from your algorithm

»\What needs to be done on the input to
produce the output? Algorithm

L s i

Solving Problems: Algorithm

» Determine a series of steps that transforms
the input data into the output results

> Find a solution
> Break down the steps

» Find all the special cases that the must be
handled

» If necessary modify or redesign your series
of steps so that all special cases are handled

» Verify (test) your algorithm

L s i

Solving Problems: Coding

» Describe your algorithm by a programming
language

» You must code exactly in the programming
language syntax

» Compiler itself is a program it isn't a human
> It i1s not intelligent
> It just does the steps of the compiling algorithm
> It does not understand what do you mean!!!

L s i

Solving Program: Execution

» Compiler generated the executable file

» Run the executable code

> First try to use simple
» Give the input
> Get results
> Then try larger and complex inputs

59

B

Errors in Solving Problems

» Compile / Syntax error: Compiler does not recognize your
code

» Link error: Linker cannot find the required libraries

» Runtime error: Program does not run correctly
> Example: Division by zero

» Logical Error: Program does not produce the expected result
> Itis called bug
> No one (compiler, assembler) except debugger can help you ®

» Why error?

> You do not understand and analysis the problem correctly
> You do not develop a right algorithm for the problem
> You have mistakes in your coding

D . &

Debugging

» The process of resolving the errors

> Example: A program to divide two numbers

» Compile/Syntax error
> Comopiler tells where it is = check syntax

» Link error

> Compiler tells what it is 2 check syntax & libraries

» Run time error
> Try to find it > use debugger to run step-by-step, print debug messages
> Check syntax & semantic of the line

» Logical error
> Try to find it > use debugger to run step-by-step, print debug messages
> Check syntax & semantic of program
> Revise the algorithm

2 .

Building & Running Program

" Algorithm
v
Compiler A N Assembler
Source code | ASSembly ‘ -
" code » Object code
Logical Syntax Error
Error Linker
Link Error
Execution
Error
) Loader Executable | v Libraries
Running code
Operating
System

B

62

]

Desired Features of Programs

> Integrity (gw ;o)

> Correctly solve the problem

> Clarity (zgs9)
> Easy to read

» Simplicity (Sslw)
> Easy to understand

» Efficiency (»,5)
> Speed and memory

» Modularity (slaitew)
> Break down of a large task

» Generality (couwgoes)
» _Tunable by input as much as possible

Q%P 63

Summary

» Computer organization
> Hardware and Software

» Algorithm & Program
> What is the difference between them

» How to solve a problem using computer
> Steps

» Errors in problem solving

» What is the next: Design algorithm - Program
L o i

Reference

> Reading Assignment: Chapter 1 of “C How
to Program”

- &

B

