
Algorithms Analysis and Design Project Topics
Instructor: Morteza Zakeri Spring 2024

Final Project

The final project draws together concepts from across the quarter: graph
algorithms, divide-and-conquer algorithms, randomized algorithms, greedy
algorithms, dynamic programming, and intractability. The problems here are
designed to combine these topics in new ways so that you can appreciate how
versatile a skillset you've acquired this quarter.

Choose and answer one of the six algorithmic problems given here. Each problem
may combine two or three different techniques from the course, so by answering
two of the three problems you will have demonstrated a mastery of four of the six
topics we have covered. You will not improve your overall score by submitting
answers to multiple problems – if you do, we will only grade the first two – but you
are welcome to answer all three problems and submit your answers to the two you
are most comfortable with.

The project must be completed in groups of at most four students. While we permit
collaboration on the problem sets, group members must not collaborate with
anyone else on this project. You can ask the course staff clarifying questions about
the problems if you are unsure what they are asking, but we will not provide hints,
check your work, etc.

You must not consult any outside resources when completing this project. You may
only refer to materials on the course website, the book Algorithm Design by
Kleinberg and Tardos, notes that you yourself have taken over the course of the
class, lecture videos, and your own graded problem sets. For example, you must
not use a search engine to look up anything related to any of the problems in this
project, nor should you look at any other student's notes.

You must submit your answers to the elearn portal containing the following
artifacts:

1. The implementation of all required algorithms (any programming language)
2. Documentation (description of proposed implementation, time and space

complexity, answer to questions, teamwork, etc.)

2 / 15

3. A recorded presentation (15-20 minutes demonstrating the execution of the
developed programs as well as describing your solutions and algorithmic
decisions).

This final project is worth 20-25% of your grade in this course. The final project's
due date is one week after the final exam was held. No late submissions are
accepted.

It has been a pleasure teaching Algorithm Analysis and Design this quarter.
Best of luck with the final project!

Final Project Topics

Topic 1: Multicolored Spanning Trees
Suppose that you have a connected, undirected graph G = (V, E) where each edge is
colored either red or blue. Given a number k, you are interested in determining
whether there is some spanning tree of G that contains exactly k blue edges.

i. Design a polynomial-time algorithm that finds a spanning tree of G
containing the minimum possible number of blue edges. Then:

• Describe your algorithm.

• Prove that your algorithm finds a spanning tree of G containing the
minimum possible number of blue edges.

• Prove that your algorithm runs in polynomial time.

ii. Design an algorithm that finds a spanning tree of G containing the maximum
possible number of blue edges. Then:

• Describe your algorithm.

• Prove that your algorithm finds a spanning tree of G containing the
maximum possible number of blue edges.

3 / 15

• Prove that your algorithm runs in polynomial time.

iii. Suppose T₁ and T₂ are spanning trees of G where T₁ contains k₁ blue edges
and T₂ contains k₂ > k₁ blue edges. Prove there must be some spanning tree T
of G containing exactly k₁ + 1 blue edges.

iv. Design an algorithm that, given a number k, determines whether there is a
spanning tree of G that contains exactly k blue edges. Note that you don't
need to find such a spanning tree; you just need to determine whether one
exists. Your algorithm should run in time polynomial in n and m (the number
of nodes and edges in G), but not in k. Then:

• Describe your algorithm.

• Briefly justify why your algorithm determines whether there is a spanning
tree of G containing exactly k blue edges. You don't need to write a formal
proof here but should give a one-paragraph justification as to why your
algorithm works.

• Briefly justify why your algorithm runs in time polynomial in n and m.

4 / 15

Topic 2: Evaluating NAND Trees
A NAND tree is a complete binary tree with the following properties:

• Each leaf node is labeled either 0 or 1.

• All internal nodes are NAND gates. A NAND gate is a logic gate that takes in
two inputs and evaluates to 0 if both its inputs are 1 and to 1 if either input is
0.

We can evaluate a NAND tree by computing the value of the top-level NAND gate in
the tree, which will evaluate either to 0 or to 1. (If the tree is a single leaf, the tree
evaluates to the value of that leaf.) For example, the left and right trees below
evaluate to 1; the middle tree evaluates to 0:

Here is a simple recursive algorithm for evaluating a NAND tree:

• If the tree is a single leaf node, return the value of that node.

• Otherwise, recursively evaluate the left and right subtrees, then apply the
NAND operator to both of those values.

This algorithm takes Θ(n) time to evaluate a NAND tree with n-leaf nodes. We can
improve this algorithm using short-circuiting. If one subtree of node v evaluates to
0, then v must evaluate to 1 because 0 NAND 0 = 1 and 0 NAND 1 = 1. Therefore, we
don't need to evaluate v's other subtree. This gives the following algorithm, which
we'll call the left-first algorithm:

• If the tree is a single leaf node, return the value of that node.
• Otherwise:
• Recursively evaluate the left subtree.
• If it evaluates to 0, return 1.
• Otherwise, recursively evaluate the right subtree.
• If it evaluates to 0, return 1; otherwise, return 0.

11 0100 01111011

5 / 15

In many cases, the left-first algorithm runs faster than the Θ(n)-time naïve
algorithm. However, it is possible to construct NAND trees for which the left-first
algorithm runs in time Θ(n).

i. Design an algorithm that creates a NAND tree T with n = 2k leaf nodes such
that the left-first algorithm never short-circuits when evaluating T. Your
algorithm should run in time polynomial in n. Then:

• Describe your algorithm.

• Prove that your algorithm produces a tree T with n leaves such that the
left-first algorithm never short-circuits when evaluating T.

• Prove your algorithm runs in time polynomial in n.

Since the left-first algorithm never short-circuits on inputs produced by your
algorithm, the left-first algorithm has a worst-case runtime of Θ(n).

More generally, any deterministic algorithm for evaluating a NAND tree will have at
least one input that causes it to run in Θ(n) time, but you don't need to prove this.

Despite the Θ(n) worst-case for deterministic evaluation algorithms, there is a
simple randomized algorithm for evaluating NAND trees that, on expectation, does
less than Θ(n) work. The idea is simple: use the same algorithm as above, but
choose which subtree to evaluate first uniformly at random. We'll call this the
random-first algorithm. More concretely:

• If the tree is a single leaf node, return the value of that node.
• Otherwise:
• Choose one of the subtrees of the root at random and evaluate it.
• If the value is 0, return 1.
• Otherwise, recursively evaluate the other subtree.
• If the value is 0, return 1; otherwise return 0.

To determine the runtime of the random-first algorithm, we will introduce two
recurrence relations. Let T₀(n) be the expected runtime of the random-first
algorithm on a tree with n leaf nodes assuming the root evaluates to 0. Let T₁(n) be
the expected runtime of the random-first algorithm on a tree with n leaf nodes
assuming the root evaluates to 1.

ii. Prove that the following recurrence relations for T₀(n) and T₁(n) are correct:

T₀(1) Θ(1)≤
T₀(n) 2T≤ ₁(n / 2) + Θ(1)

T₁(1) Θ(1)≤
T₁(n) ½T≤ ₁(n / 2) + T₀(n / 2) + Θ(1)

6 / 15

iii. (It turns out that T₁(n) T≤ ₀(n), though it's somewhat difficult to formally
establish this. Using this fact, prove that T₀(n) = O(nε) for some ε < 1. You can
assume n = 4k for some natural number k. (Hint: Write T₀(n) in terms of itself.)

Your result from (iii) proves that the random-first algorithm has expected sublinear
runtime on all inputs, since T₁(n) T≤ ₀(n) = O(nε) = o(n). This is one of a few known
problems where the best-randomized algorithm is more efficient on expectation
than the best deterministic algorithm in the worst case.

The last part of this problem explores this question: what happens if you try to
evaluate a randomly chosen NAND tree? The result is surprising.

Let's say a random NAND tree with n = 2k leaves is a NAND tree where each leaf is
independently assigned a value of 0 or 1 uniformly at random.

iv. Let P (₀ n) denote the probability that a random NAND tree with n leaves
evaluates to 0 and P (₁ n) denote the probability that a random NAND tree
with n leaves evaluates to 1. Write recurrence relations for P (₀ n) and P (₁ n)
and briefly explain why your recurrences are correct.

The recurrence relations you came up with in (iv) can't be solved using the
techniques we've developed in this course, but you can easily write a short
computer program to determine their values by writing out n = 2k and evaluating
the recurrence for increasing values of k. If you do, you'll find that when k 15, ≥ P0
(n) is extremely close to 1 if k is even and P1 (n) is extremely close to 1 if k is odd.
Consequently, the algorithm “return the height of the tree modulo 2” returns the
right answer with high probability in time Θ(log n), even though it never actually
evaluates the tree!

7 / 15

Topic 3: Building Roads to Connect Cities

Problem Introduction

In this problem, the goal is to build roads between some
pairs of the given cities such that there is a path
between any two cities and the total length of the roads
is minimized.

Problem Description

Task. Given n points on a plane, connect them with segments of minimum total
length such that there is a path between any two points. Recall that the length of
segments with endpoints (x1 , y1)and (x2 , y2) is equal to √ (x1, y1)2+(x2 , y2)2

Input format. The first line contains the number n of points. Each of the following n
lines defines a point(x i , y i).

Constraints. 1 ≤ n ≤ 200; -103 ≤ x i , y i ≤ 103 are integers. All points are pairwise
different, no three points lie on the same line.

Output Format. Output the minimum total length of segments. The absolute value
of the difference between the answer of your program and the optimal value
should be at most 10-6. To ensure this, output your answer with at least seven digits
after the decimal point(otherwise your answer, while being computed correctly, can
turn out to be wrong because of rounding issues).

Time Limits.

Languag
e

C C++ Java Pytho
n

C# Haskel
l

JavaScrip
t

Ruby Scal
a

Time(sec
)

2 2 3 10 3 4 10 6 6

 Sample 1.

 Input:
4
0 0

8 / 15

Memory limit. 512MB.

 Output:

3.000000000

An optimal way to connect these four points is shown below. Note that there exists
other ways of connecting these points by segments of total weight 3.

Sample 2.

 Input:

5
0 0
0 2
1 1
3 0
3 2

 Output:

7.064495102

An optimal way to connect these five points is shown below.

0 1
1 0
1 1

9 / 15

The total length here is equal to 2√2+√5+2.

10 / 15

Topic 4: Computing Prime Paths and Test-Paths
Problem Introduction

Control Flow Graphs (CFGs) are essential representations of program code that help
analyze the different execution paths within a program. In this project, we aim to
compute prime paths from a given CFG. Prime paths are fundamental in
understanding program behavior, identifying critical paths, and optimizing code.
We will explore topics such as side-trips, detours, and execution paths to achieve
this goal.

A control flow graph (CFG) is a graphical representation of a program’s basic
blocks and their interconnections. Each basic block represents a sequence of non-
compound statements that execute together. CFGs are widely used in code-
checking tools, compilers, and software analysis.

Problem Description

I. Constructing the CFG (Optional):
 Build a CFG from a given program using basic blocks.
 Identify entry and exit points in the CFG.

II. Prime Path Computation:
 Define prime paths as sequences of basic blocks that cover all possible

execution paths. The exact definition is available at
.

 Develop an algorithm to find prime paths efficiently.
 Consider side trips (additional paths) and detours (revisiting blocks)

during path computation.
III. Path Coverage Analysis:

 Evaluate the coverage of prime paths in the CFG.
 Investigate the impact of different paths on program behavior.

Methodology

i. CFG Construction (Optional):

Parse the program code to extract basic blocks.

Create a directed graph with basic blocks as nodes and edges representing control
flow.

ii. Prime Path Algorithm:

Adapt existing algorithms (e.g., Floyd-Warshall, Tarjan) to find prime paths.

Handle loops, conditionals, and branching effectively.

11 / 15

IV. Coverage Analysis:

Implement path traversal to validate prime paths.

Measure coverage and identify uncovered paths.

iii. Computational complexity analysis

Discuss the time and space complexity of the proposed algorithms using
asymptotic notations.

Sample outputs are available at
https://cs.gmu.edu:8443/offutt/coverage/GraphCoverage

Topic 5: Automated Detection of Design Patterns and Smells in
Class Diagrams

Problem Description

Class diagrams are fundamental in software modeling, representing the static
structure of a system. In this project, we aim to develop an automated approach to
identify common design patterns and detect code smells within class diagrams. By
leveraging graph-based techniques, we will analyze the relationships between
classes and uncover potential issues.

Class diagrams provide a visual representation of classes, their attributes, and
associations. Detecting design patterns (such as Singleton, Factory Method, and
Observer) and identifying code smells (such as God Classes, Feature Envy, and
Inappropriate Intimacy) in class diagrams is crucial for maintaining software quality

.

Objectives
1. Graph Representation:

o Convert class diagrams into directed labeled graphs (DLGs).
o Define nodes (classes) and edges (associations) in the DLG.

2. Design Pattern Detection:
o Implement algorithms to recognize common design patterns.
o Explore graph traversal techniques to identify pattern structures.

3. Code Smell Identification:
o Define metrics for code smells (e.g., high coupling, low cohesion).
o Analyze the DLG to detect potential code smell instances.

4. Algorithmic Questions:
o Discuss the time and space complexity of the detection algorithms.

https://cs.gmu.edu:8443/offutt/coverage/GraphCoverage

12 / 15

o Investigate trade-offs between accuracy and efficiency.
o Propose improvements or optimizations.

Methodology
1. Graph Construction:

o Parse class diagrams (UML (XMI) or other formats) to create DLGs.
o Represent classes as nodes and associations as edges.

2. Design Pattern Detection Algorithms:
o Implement algorithms for detecting common patterns (e.g., Singleton,

Factory Method). By representing design patterns as subgraphs, you
can use subgraph isomorphism algorithms to identify occurrences of
these patterns in class diagrams

o Consider pattern variations and edge cases.
3. Code Smell Metrics:

o Define metrics (e.g., coupling, cohesion) based on graph properties.
o Evaluate class relationships to identify smells.

4. Evaluation and Validation:
o Apply the approach to real-world class diagrams.
o Validate results against manually labeled patterns and smells.

13 / 15

Topic 6: Constrained Scheduling
Suppose you have a supercomputer that can run jobs one at a time. You have a set
of jobs J that you need to run and want to determine the best order in which to run
them. Not all jobs take the same amount of time to complete; specifically, job jk

takes time tk to complete. Each job must run to completion once started, so you
can't pause or stop a job after starting it.

Certain jobs depend on results computed by other jobs, so you cannot run the jobs
in a completely arbitrary order. Specifically, you have a DAG G = (J, E) whose nodes
are the jobs J and where each edge (ji, jk) indicates that job ji must be run before job
jk.

Under these restrictions, it's easy to schedule all the jobs as efficiently as possible:
just topologically sort the DAG and run the jobs in that order. Of course, there's a
catch. Associated with each job j ₖ is a cost function cₖ(t) denoting the cost of
completing job j ₖ at time t. These functions are monotonically increasing, so for
any job jₖ and any ε > 0, we have cₖ(t) < cₖ(t + ε). Your task is to find a way of
ordering all of the jobs on the supercomputer so that all constraints are satisfied
and the total cost is as low as possible. Specifically, you want to minimize

 ∑ ck (f (jk))
jk∈J

Where f (jₖ) denotes the time at which job jₖ finishes. This problem is known to be
NP-hard.
A naïve algorithm for this problem is to try out every possible topological ordering
of the DAG and find the ordering with the least total cost, but this algorithm can be
incredibly slow.

i. Prove that for all n 0, there is a DAG with ≥ n nodes and Ω(n!) topological
orderings. This shows the naïve algorithm has worst-case runtime Ω(n!).

Fortunately, we can improve upon the naïve algorithm using dynamic
programming. Let's call a set S ⊆ J a feasible set iff for every jk ∈ S, if there is a path
from ji to jk in G (i.e. jk depends on ji), then ji ∈ S. Intuitively, a feasible set is a set of
jobs that can be scheduled without missing any prerequisites. For example, in the
following DAGs, the indicated nodes are feasible sets:

14 / 15

For any feasible set S, let LAST(S) denote the set of all jobs jk ∈ S such that (jk, ji) ∉ E
for any ji ∈ S. In other words, LAST(S) consists of all jobs in S that no other jobs
depend on. ii. (3 Points) Prove that if S is a feasible set, then S –{ j} is feasible for any
j ∈ LAST(S).
For any feasible set S, let OPT(S) denote the optimal cost of scheduling the jobs in
set S.

iii. Prove that in any optimal schedule for the jobs in S, the supercomputer is
never idle before all jobs have been completed (i.e. until all jobs have finished
executing, the supercomputer is always executing some job.)

iv. Write a recurrence relation for OPT(S), then prove that your recurrence
relation is correct.

Given a recurrence relation for OPT(S), it's possible to find the cost of an optimal
schedule by using the following dynamic programming algorithm:

• Let DP be a table of size 2n.

• For each subset S ⊆ J, in an appropriate order:

• If S is feasible, fill in DP[S] based on the recurrence from (iv).

• Return DP[J].
If we assume each function cₖ can be evaluated in time O(1), then (with the right
recurrence relation for OPT(S)) it's possible to fill each entry of DP in time O(n + m).
It's also possible to check whether a set is feasible in time O(n + m). This means that
the overall runtime for this algorithm is O(2n (n + m)), which is significantly better
than the Ω(n!) worst-case of the naïve algorithm!

15 / 15

References

Fowler, M., & Beck, K. (2018). Refactoring: improving the design of existing code (Second
Edi). Addison-Wesley. https://refactoring.com/

	Final Project
	Final Project Topics
	Topic 1: Multicolored Spanning Trees
	Topic 2: Evaluating NAND Trees
	Topic 3: Building Roads to Connect Cities
	Topic 4: Computing Prime Paths and Test-Paths
	Topic 5: Automated Detection of Design Patterns and Smells in Class Diagrams
	Problem Description
	Objectives
	Methodology
	Topic 6: Constrained Scheduling
	References

	Widget: (Ammann & Offutt, 2016)
	_2: (Fowler & Beck, 2018)
	_3: Ammann, P., & Offutt, J. (2016). Introduction to software testing. Cambridge University Press. https://doi.org/DOI: 10.1017/9781316771273

