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Tree

• We call an undirected graph a tree if the graph is
connected and contains no cycles.

• Trees:

• Not Trees:

Not 
connected

Has a cycle



Number of Vertices

• If a graph is a tree, then the number of edges 
in the graph is one less than the number of 
vertices.

• A tree with n vertices has n – 1 edges.

– Each node has one parent except for the root.

• Note: Any node can be the root here, as we are not
dealing with rooted trees.



Connected Graph

• A connected graph is one in which there is at
least one path between each pair of vertices.



Spanning Tree

• In a tree there is always exactly one path from each vertex in 
the graph to any other vertex in the graph.

• A spanning tree for a graph is a subgraph that includes every 
vertex of the original, and is a tree.

(a) Graph G (b) Breadth-first
spanning tree of
G rooted at b

(c) Depth-first 
spanning tree of 
G rooted at c



Non-Connected Graphs

• If the graph is not connected, we get a spanning
tree for each connected component of the
graph.

– That is we get a forest.
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Minimum Spanning Trees

• Spanning Tree
– A tree (i.e., connected, acyclic graph) which contains all 

the vertices of the graph

• Minimum Spanning Tree
– Spanning tree with the minimum sum of weights

• Spanning forest
– If a graph is not connected, then there is a spanning 

tree for each connected component of the graph
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Finding a Spanning Tree

Find a spanning tree for the graph below.

We could break the two cycles by removing a single edge from each. One of 
several possible ways to do this is shown below.



Minimum Spanning Tree

• A spanning tree that has minimum total weight
is called a minimum spanning tree for the
graph.
– Technically it is a minimum-weight spanning tree.

• If all edges have the same weight, breadth-
first search or depth-first search will yield
minimum spanning trees.
– For the rest of this discussion, we assume the

edges have weights associated with them.



Minimum Spanning Tree

• Consider this graph.

• It has 20 spanning trees. Some are:

• There are two minimum-
cost spanning trees, 
each with a cost of 6:



Applications of MST

• Minimum-cost spanning trees have many 
applications.

– Building cable networks that join n locations with 
minimum cost.

– Building a road network that joins n cities with 
minimum cost.
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Problem: Laying Telephone Wire

Central office
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Wiring: Naïve Approach

Central office

Expensive!
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Wiring: Better Approach

Central office

Minimize the total length of wire connecting the customers
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Applications of MST

– Find the least expensive way to connect a set of 

cities, terminals, computers, etc.
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Example

Problem
• A town has a set of houses 

 and a set of roads

• A road connects 2 and only 

 2 houses

• A road connecting houses u and v has a repair 

      cost w(u, v)

Goal: Repair enough (and no more) roads such 
that:

1. Everyone stays connected 
 i.e., can reach every house from all other houses

2.   Total repair cost is minimum
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Minimum Spanning Trees

• A connected, undirected graph:

– Vertices = houses,       Edges = roads

• A weight w(u, v) on each edge (u, v)  E
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Find T  E such that:

1. T connects all vertices

2. w(T) = Σ(u,v)T w(u, v) is 

 minimized
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Properties of Minimum Spanning Trees

• Minimum spanning tree is not unique

• MST has no cycles – see why:

– We can take out an edge of a cycle, and still have 

the vertices connected while reducing the cost

• # of edges in a MST:

– |V| - 1 



Brute Force MST

• Brute Force option:
1. For all possible spanning trees

i. Calculate the sum of the edge weights

ii. Keep track of the tree with the minimum weight.

• Step i) requires N-1 time, since each tree
will have exactly N-1 edges.

• If there are M spanning trees, then the total
cost will O(MN).

• Consider a complete graph, with N(N-1)
edges. How big can M be?



Brute Force MST

• For a complete graph, it has been shown

that there are NN-2 possible spanning trees!

• Alternatively, given N items, you can build
NN-2

• distinct trees to connect these items.



Greedy MST

• There are many approaches to computing a
minimum spanning tree. We could try to detect
cycles and remove edges, but the two
algorithms we will study build them from the
bottom-up in a greedy fashion.

• Kruskal’s Algorithm – starts with a forest of single
node trees and then adds the edge with the
minimum weight to connect two components.

• Prim’s Algorithm – starts with a single vertex and then
adds the minimum edge to extend the spanning
tree.
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Growing a MST – Generic Approach
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• Grow a set A of edges (initially 

empty)

• Incrementally add edges to A 

such that they would belong 

    to a MST

– An edge (u, v) is safe for A if and 

only if A  {(u, v)} is also a subset 

of some MST

Idea: add only “safe” edges
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Generic MST algorithm

1. A ←  

2. while A is not a spanning tree

3.          do find an edge (u, v) that is safe for A

4.               A ← A  {(u, v)} 

5. return A

• How do we find safe edges?
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S

V - S

Finding Safe Edges

• Let’s look at edge (h, g)

– Is it safe for A initially?

• Later on:

– Let S  V be any set of vertices that includes h but not 

g (so that g is in V - S)

– In any MST, there has to be one edge (at least) that 

connects S with V - S 

– Why not choose the edge with minimum weight (h,g)? 
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Definitions

• A cut (S, V - S) 

is a partition of vertices 

into disjoint sets S and V - S

• An edge crosses the cut

(S, V - S) if one endpoint is in S 

and the other in V – S
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Definitions (cont’d)

• A cut respects a set A 

   of edges  no edge 

   in A crosses the cut

• An edge is a light edge 

  crossing a cut  its weight is minimum over all 

edges crossing the cut

– Note that for a given cut, there can be > 1 light 

   edges crossing it
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Theorem

• Let A be a subset of some MST (i.e., T), (S, V - S) be a 

cut that respects A, and (u, v) be a light edge crossing 

(S, V-S). Then (u, v) is safe for A.

Proof:

• Let T be an MST that includes A

– edges in A are shaded

• Case1: If T includes (u, v), then 

    it would be safe for A

• Case2: Suppose T does not include

the edge (u, v)

• Idea: construct another MST T’

that includes A  {(u, v)}

u

v

S

V - S
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u

v

S

V - S

Theorem - Proof

• T contains a unique path p between u and v

• Path p must cross the 

   cut (S, V - S) at least 

 once: let (x, y) be that edge

• Let’s remove (x,y)  breaks 

   T into two components.

• Adding (u, v) reconnects the components 

  T’ = T - {(x, y)}  {(u, v)}

x

y

p
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Theorem – Proof (cont.)

T’ = T - {(x, y)}  {(u, v)}

Have to show that T’ is an MST:

• (u, v) is a light edge 

  w(u, v) ≤ w(x, y)

• w(T ’) = w(T) - w(x, y) + w(u, v)

     ≤ w(T) 

• Since T  is a spanning tree

 w(T) ≤ w(T ’)  T’  must be an MST as well
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Theorem – Proof (cont.)

Need to show that (u, v) is safe for A:

i.e., (u, v) can be a part of an MST

• A  T and (x, y)  T  

  (x, y)  A  A T’

• A  {(u, v)}  T’

• Since T’  is an MST 

 (u, v) is safe for A
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Prim’s Algorithm

• The edges in set A always form a single tree

• Starts from an arbitrary “root”: VA = {a}

• At each step:

– Find a light edge crossing (VA, V - VA)

– Add this edge to A

– Repeat until the tree spans all vertices
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How to Find Light Edges Quickly?

Use a priority queue Q:

• Contains vertices not yet 

 included in the tree, i.e., (V – VA)

– VA = {a}, Q = {b, c, d, e, f, g, h, i}

• We associate a key with each vertex v:

  key[v] = minimum weight of any edge (u, v)  

     connecting v to VA
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How to Find Light Edges Quickly? 

(cont.)
• After adding a new node to VA we update the weights of all 

the nodes adjacent to it

             e.g., after adding a to the tree, k[b]=4 and k[h]=8

• Key of v is  if v is not adjacent to any vertices in VA

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6



34

Example

    0           

Q = {a, b, c, d, e, f, g, h, i} 

VA = 

Extract-MIN(Q)  a
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key [b] = 4  [b] = a

key [h] = 8  [h] = a

     4       8  

Q = {b, c, d, e, f, g, h, i}  VA = {a}

Extract-MIN(Q)  b

  

 

  

 

 

 

4

8
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4 



8  

8



Example
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key [c] = 8  [c] = b

key [h] = 8  [h] = a - unchanged

     8      8  

Q = {c, d, e, f, g, h, i}  VA = {a, b}

Extract-MIN(Q)  c

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [d] = 7  [d] = c

key [f] = 4  [f] = c

key [i] = 2   [i] = c

     

       7   4   8  2 

Q = {d, e, f, g, h, i}  VA = {a, b, c}

Extract-MIN(Q)  i





4 



8  
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Example
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key [h] = 7  [h] = i

key [g] = 6  [g] = i

     7   4 6  8 

Q = {d, e, f, g, h}  VA = {a, b, c, i}

Extract-MIN(Q)  f
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key [g] = 2  [g] = f

key [d] = 7  [d] = c unchanged

key [e] = 10  [e] = f

     7 10 2 8 

Q = {d, e, g, h}  VA = {a, b, c, i, f}

Extract-MIN(Q)  g
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Example
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key [h] = 1  [h] = g

        7 10 1  

Q = {d, e, h}  VA = {a, b, c, i, f, g}

Extract-MIN(Q)  h
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Example
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key [e] = 9   [e] = f

        9   

Q = {e}  VA = {a, b, c, i, f, g, h, d}

Extract-MIN(Q)  e

Q =   VA = {a, b, c, i, f, g, h, d, e}
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PRIM(V, E, w, r)

1.  Q ←  

2.  for each u  V

3.        do key[u] ← ∞

4.             π[u] ← NIL

5.             INSERT(Q, u)

6.  DECREASE-KEY(Q, r, 0)         ► key[r] ← 0

7.  while Q    

8.             do u ← EXTRACT-MIN(Q)

9.                  for each v  Adj[u]

10.                        do if v  Q and w(u, v) < key[v]

11.                                 then π[v] ← u

12.                                          DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented 

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap 

operations:

O(VlgV)

Executed O(E) times total

Constant

Takes O(lgV)

O(ElgV)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV) 
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Using Fibonacci Heaps 

•  Depending on the heap implementation, running time

    could be improved!



Prim’s Algorithm

• Prim’s algorithm finds a minimum cost spanning tree
by selecting edges from the graph one-by-one as
follows:

• It starts with a tree, T, consisting of a single starting
vertex, x.

• Then, it finds the shortest edge emanating from x that
connects T to the rest of the graph (i.e., a vertex not in
the tree T).

• It adds this edge and the new vertex to the tree T.
• It then picks the shortest edge emanating from the

revised tree T that also connects T to the rest of the
graph and repeats the process.



Prim’s Algorithm Abstract

Consider a graph G=(V, E);

Let T be a tree consisting of only the starting vertex
x;

while (T has fewer than I V I vertices)

{

find a smallest edge connecting T to G-T; 

add it to T;

}



Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm 

• Prim’s algorithm is a “greedy” algorithm

– Greedy algorithms find solutions based on a sequence 

of choices which are “locally” optimal at each step.

• Nevertheless, Prim’s greedy strategy produces a 

globally optimum solution!

– See proof for generic approach (i.e., slides 12-15)
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A different instance of the generic approach

• A is a forest containing connected 
components
– Initially, each component is a single 

vertex

• Any safe edge merges two of 
these components into one
– Each component is a tree

u

v

S

V - S

u

v

tree1

tree2

(instance 1)

(instance 2)
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Kruskal’s Algorithm

• How is it different from Prim’s algorithm?

– Prim’s algorithm grows one 

   tree all the time

– Kruskal’s algorithm grows 

   multiple trees  (i.e., a forest) 

   at the same time.

– Trees are merged together 

    using safe edges

– Since an MST has exactly |V| - 1 

   edges, after |V| - 1 merges, 

   we would have only one component

u

v

tree1

tree2
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We would add

edge (c, f)
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Kruskal’s Algorithm

• Start with each vertex being its 

own component

• Repeatedly merge two 

components into one by 

choosing the light edge that 

connects them

• Which components to consider 

at each iteration?

– Scan the set of edges in 

monotonically increasing order by 

weight



Kruskal’s Algorithm

• Greedy algorithm to choose the edges as follows.

Step 1 First edge: choose any edge with the minimum weight.

Step 2 Next edge: choose any edge with minimum weight from those
not yet selected. (The subgraph can look disconnected at this
stage.)

Step 3 Continue to choose edges of minimum weight from those not
yet selected, except do not select any edge that creates a
cycle in the subgraph.

Step 4 Repeat step 3 until the subgraph connects all vertices of the
original graph.
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Example

1. Add (h, g)

2. Add (c, i)

3. Add (g, f)

4. Add (a, b)

5. Add (c, f)

6. Ignore (i, g)

7. Add (c, d)

8. Ignore (i, h)

9. Add (a, h)

10.  Ignore (b, c)

11.  Add (d, e)

12.  Ignore (e, f)

13. Ignore (b, h)

14. Ignore (d, f)
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1: (h, g)

2: (c, i), (g, f)

4: (a, b), (c, f)

6: (i, g)

7: (c, d), (i, h)

8: (a, h), (b, c) 

9: (d, e)

10: (e, f)

11: (b, h)

14: (d, f)

{g, h}, {a}, {b}, {c}, {d}, {e}, {f}, {i}

{g, h}, {c, i}, {a}, {b}, {d}, {e}, {f}

{g, h, f}, {c, i}, {a}, {b}, {d}, {e}

{g, h, f}, {c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}



Kruskal’s Algorithm
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B

Use Kruskal’s algorithm to find a minimum spanning tree for the graph.



Kruskal’s Algorithm

Solution
First, choose ED (the smallest weight).

A

C

D
E

1

7

7.5

8

3

4

4.5
F 9.5

10

1.5

B



Kruskal’s Algorithm

Solution
Now choose BF (the smallest remaining weight).
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Kruskal’s Algorithm

Solution
Now CD and then BD.
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Kruskal’s Algorithm

Solution
Note EF is the smallest remaining, but that would create a cycle. Choose AE 
and we are done.
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Kruskal’s Algorithm

Solution
The total weight of the tree is 16.5.
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Kruskal’s Algorithm

• Question:

1. How do we know we are finished?
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Kruskal’s Algorithm

• Trace of Kruskal's algorithm for 
the undirected, weighted graph:

The minimum cost is: 24
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We would add

edge (c, f)
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Implementation of Kruskal’s Algorithm

• Uses a disjoint-set data 

structure (see Chapter 

21) to determine whether 

an edge connects 

vertices in different 

components
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Operations on Disjoint Data Sets

• MAKE-SET(u) – creates a new set whose only 

member is u

• FIND-SET(u) – returns a representative element 

from the set that contains u

– Any of the elements of the set that has a particular 

property

– E.g.: Su = {r, s, t, u}, the property is that the element be 

the first one alphabetically

       FIND-SET(u) = r   FIND-SET(s) = r

– FIND-SET has to return the same value for a given set
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Operations on Disjoint Data Sets

• UNION(u, v) – unites the dynamic sets that 

contain u and v, say Su and Sv

– E.g.: Su =  {r, s, t, u},  Sv = {v, x, y} 

 UNION (u, v) = {r, s, t, u, v, x, y}

• Running time for FIND-SET and UNION 

depends on implementation.

• Can be shown to be α(n)=O(lgn) where α() is a 

very slowly growing function (see Chapter 21)
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1. A ←  

2. for each vertex v  V

3.          do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6.       do if FIND-SET(u)  FIND-SET(v)

7.                then A ← A  {(u, v)} 

8.                        UNION(u, v)

9. return A

Running time: O(V+ElgE+ElgV)=O(ElgE) – dependent on 

the implementation of the disjoint-set data structure

KRUSKAL(V, E, w)

O(V)

O(ElgE)

O(E)

O(lgV)
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1. A ←  

2. for each vertex v  V

3.          do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6.       do if FIND-SET(u)  FIND-SET(v)

7.                then A ← A  {(u, v)} 

8.                        UNION(u, v)

9. return A

- Running time: O(V+ElgE+ElgV)=O(ElgE)

- Since E=O(V2), we have lgE=O(2lgV)=O(lgV)

KRUSKAL(V, E, w) (cont.)

O(V)

O(ElgE)

O(E)

O(lgV)

O(ElgV)



Kruskal’s Algorithm – Time complexity

• Steps

– Initialize forest

– Sort edges

• Check edge for cycles O( |V| )

O( |V| )

O( |E|log|E| )

x

O( |V|2 )

O( |V|+|E|log|E|+|V|2 ) 

O( |V|2 log|V| )

• Number of edges

– Total

– Since |E| = O( |V|2 )

O( |V| )

– Thus we would class MST as O( n2 log n ) for a graph with n vertices

– This is an upper bound, some improvements on this are known.
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Kruskal’s Algorithm

• Kruskal’s algorithm is a “greedy” algorithm

• Kruskal’s greedy strategy produces a globally 

optimum solution

• Proof for generic approach 

   applies to Kruskal’s 

   algorithm too
u

v

S

V - S

x

y



Prim’s and Kruskal’s Algorithms

• It is not necessary that Prim's and Kruskal's algorithm
generate the same minimum-cost spanning tree.

• For example for the graph shown on the right:

• Kruskal's algorithm results in the following minimum cost 
spanning tree:

– The same tree is generated by Prim's algorithm if the start vertex is 
any of: A, B, or D.

• However if the start vertex is C the minimum cost spanning 
tree generated by Prim’s algorithm is:
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Problem 1

• (Exercise 23.2-3, page 573) Compare Prim’s algorithm 

with and Kruskal’s algorithm assuming:

(a) sparse graphs: 

In this case, E=O(V)

Kruskal: 

      O(ElgE)=O(VlgV)

Prim:

 - binary heap: O(ElgV)=O(VlgV)

 - Fibonacci heap: O(VlgV+E)=O(VlgV)
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Problem 1 (cont.)

(b) dense graphs

 In this case, E=O(V2) 

Kruskal: 

       O(ElgE)=O(V2lgV2)=O(2V2lgV)=O(V2lgV)

Prim:

 - binary heap: O(ElgV)=O(V2lgV)

 - Fibonacci heap: O(VlgV+E)=O(VlgV+V2)=O(V2)
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• (Exercise 23.2-4, page 574): Analyze the 

running time of Kruskal’s algorithm when 

weights are in the range [1 … V].

Problem 2



1. A ←  

2. for each vertex v  V

3.          do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6.       do if FIND-SET(u)  FIND-SET(v)

7.                then A ← A  {(u, v)} 

8.                        UNION(u, v)

9. return A

O(lgV)

O(V)

O(ElgE)

O(E)

- Sorting can be done in O(E) time (e.g., using counting sort)

- However, overall running time will not change, i.e, O(ElgV)

Problem 2 (cont.)



85

Problem 3

• Suppose that some of the weights in a connected 

graph G are negative. Will Prim’s algorithm still 

work? What about Kruskal’s algorithm? Justify 

your answers.

– Yes, both algorithms will work with negative weights. 

Review the proof of the generic approach; there is no 

assumption in the proof about the weights being 

positive.
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Problem 4

• (Exercise 23.2-2, page 573) Analyze Prim’s 

algorithm assuming:

 (a) an adjacency-list representation of G

              O(E.lgV)

 (b) an adjacency-matrix representation of G

               O(E.lgV+V2)
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PRIM(V, E, w, r)

1.  Q ←  

2.  for each u  V

3.        do key[u] ← ∞

4.             π[u] ← NIL

5.             INSERT(Q, u)

6.  DECREASE-KEY(Q, r, 0)         ► key[r] ← 0

7.  while Q    

8.             do u ← EXTRACT-MIN(Q)

9.                  for each v  Adj[u]

10.                        do if v  Q and w(u, v) < key[v]

11.                                 then π[v] ← u

12.                                          DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented 

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap 

operations:

O(VlgV)

Executed O(E) times

Constant

Takes O(lgV)

O(ElgV)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV) 
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PRIM(V, E, w, r)

1.  Q ←  

2.  for each u  V

3.        do key[u] ← ∞

4.             π[u] ← NIL

5.             INSERT(Q, u)

6.  DECREASE-KEY(Q, r, 0)         ► key[r] ← 0

7.  while Q    

8.             do u ← EXTRACT-MIN(Q)

9.                  for (j=0; j<|V|; j++)

10.                       if (A[u][j]=1)

11.                           if v  Q and w(u, v) < key[v]

12.                                 then π[v] ← u

13.                                          DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented 

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap 

operations:

O(VlgV)

Executed O(V2) times total

Constant

Takes O(lgV) O(ElgV)

Total time: O(VlgV + ElgV+V2) = O(ElgV+V2)

O(lgV) 
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Problem 5

• Find an algorithm for the “maximum” spanning 

tree. That is, given an undirected weighted 

graph G, find a spanning tree of G of maximum 

cost. Prove the correctness of your algorithm.
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Problem 5

• Find an algorithm for the “maximum” spanning 

tree. That is, given an undirected weighted 

graph G, find a spanning tree of G of maximum 

cost. Prove the correctness of your algorithm.

– Consider choosing the “heaviest” edge (i.e., the edge 

associated with the largest weight) in a cut. The 

generic proof can be modified easily to show that this 

approach will work. 

– Alternatively, multiply the weights by -1 and apply 

either Prim’s or Kruskal’s algorithms without any 

modification at all!
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Problem 6

• (Exercise 23.1-8, page 567) Let T be a MST of 

a graph G, and let L be the sorted list of the 

edge weights of T. Show that for any other MST 

T’ of G, the list L is also the sorted list of the 

edge weights of T’.

T, L={1,2} T’, L={1,2}



A cable company want to connect five villages to their network, 
which currently extends to the market town of Avenford. What is
the minimum length of cable needed?

Avenford Fingley

Brinleigh Cornwell

Donster

Edan

2

7

4
5

8
4

5

3

6

8

Problem 7: Prim’s algorithm with an 
Adjacency Matrix



A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

Note, this example has outgoing edges on the columns and incoming on

the rows, so it is the transpose of adjacency matrix mentioned in class.

Actually, it is an undirected, so AT = A.

Problem 7: Prim’s algorithm with an 
Adjacency Matrix



A B C D E F
A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

•Start at vertex A. Label columnA “1” .

•Delete row A

•Select the smallest entry in columnA (AB, length 3)

1

Brinleigh

3

Avenford

Problem 7: Prim’s algorithm with an 
Adjacency Matrix



A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2
•Label column B “2”

•Delete row B

•Select the smallest uncovered entry in either column 

A or column B (AE, length 4)

Brinleigh

3

Avenford

4

Edan



A B C D E F
A - 3 - - 4 7

3B - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8
E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2•Label column E “3”

•Delete row E

•Select the smallest uncovered entry in either 

columnA, B or E (ED, length 2)

3

Brinleigh

3

Avenford

Edan

4

Donster

2



A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2 4 3
•Label column D “4”

•Delete row D

•Select the smallest uncovered entry in either

columnA, B, D or E (DC, length 4)

Avenford

Brinleigh

3

Edan

4

Donster

2

Cornwell

4



A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2 5 4 3
•Label column C “5”

•Delete row C

•Select the smallest uncovered entry in

either

column A, B, D, E or C (EF, length 5)

Avenford

Brinleigh

3

Edan

4

Donster

2

Cornwell

4
Fingley

5



A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2 5 4 3 6
FINALLY

•Label column F “6”

•Delete row F

Avenford

Brinleigh

3

Edan

4

Donster

2

Cornwell

4
Fingley

5



A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2 5 4 3 6
FINALLY

•Label column F “6”

•Delete row F

The spanning tree is shown in the diagram 

Length 3 + 4 + 4 + 2 + 5 = 18Km

Avenford

Brinleigh

3

Edan

4

Donster

2

Cornwell

4
Fingley

5



Quiz 1

• Find the minimum spanning tree using Kruskal’s Algorithm.

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

List the edges in increasing order:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120



Quiz 2



Quiz 3

60

b

c

d

a
e

f

1

11

4

12

2

14

3

7

6

10

• Generate 2 minimum spanning tree’s for the 
following graph using Prim’s and Kruskal’s 
algorithms

5



115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Starting from the left, add the edge to the tree if it does not close up a circuit with the edges 
chosen up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

Solution to Quiz 1



115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen 
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120



115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen 
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120



115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen 
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120



115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen 
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120



115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen 
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120



115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen 
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120



115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen up to that 
point. Notice that the edge of weight 45 would close a circuit, so we skip it.

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120



115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen 
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120



115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen 
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120



115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

The tree contains every vertex, so it is a spanning tree. The total weight is 395

Done

!



Summary Kruskal vs. Prim

• Both are Greedy algorithms
– Both take the next minimum edge
– Both are optimal (find the global min)

• Different sets of edges considered
– Kruskal – all edges
– Prim – Edges from Tree nodes to rest of G.

• Both need to check for cycles
• Both can terminate early
• Kruskal is order of O( |E| log|V| )
• Prim is order of is O(|V|2) (adjacency matrix

implementation).
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