
Analysis and Design of

Algorithms

Graphs
Part I1I : Minimum Spanning Trees (MST)

Instructor: Morteza Zakeri

Tree

• We call an undirected graph a tree if the graph is
connected and contains no cycles.

• Trees:

• Not Trees:

Not
connected

Has a cycle

Number of Vertices

• If a graph is a tree, then the number of edges
in the graph is one less than the number of
vertices.

• A tree with n vertices has n – 1 edges.

– Each node has one parent except for the root.

• Note: Any node can be the root here, as we are not
dealing with rooted trees.

Connected Graph

• A connected graph is one in which there is at
least one path between each pair of vertices.

Spanning Tree

• In a tree there is always exactly one path from each vertex in
the graph to any other vertex in the graph.

• A spanning tree for a graph is a subgraph that includes every
vertex of the original, and is a tree.

(a) Graph G (b) Breadth-first
spanning tree of
G rooted at b

(c) Depth-first
spanning tree of
G rooted at c

Non-Connected Graphs

• If the graph is not connected, we get a spanning
tree for each connected component of the
graph.

– That is we get a forest.

7

Minimum Spanning Trees

• Spanning Tree
– A tree (i.e., connected, acyclic graph) which contains all

the vertices of the graph

• Minimum Spanning Tree
– Spanning tree with the minimum sum of weights

• Spanning forest
– If a graph is not connected, then there is a spanning

tree for each connected component of the graph

a

b c d

e

g g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Finding a Spanning Tree

Find a spanning tree for the graph below.

We could break the two cycles by removing a single edge from each. One of
several possible ways to do this is shown below.

Minimum Spanning Tree

• A spanning tree that has minimum total weight
is called a minimum spanning tree for the
graph.
– Technically it is a minimum-weight spanning tree.

• If all edges have the same weight, breadth-
first search or depth-first search will yield
minimum spanning trees.
– For the rest of this discussion, we assume the

edges have weights associated with them.

Minimum Spanning Tree

• Consider this graph.

• It has 20 spanning trees. Some are:

• There are two minimum-
cost spanning trees,
each with a cost of 6:

Applications of MST

• Minimum-cost spanning trees have many
applications.

– Building cable networks that join n locations with
minimum cost.

– Building a road network that joins n cities with
minimum cost.

11

Problem: Laying Telephone Wire

Central office

12

Wiring: Naïve Approach

Central office

Expensive!

13

Wiring: Better Approach

Central office

Minimize the total length of wire connecting the customers

15

Applications of MST

– Find the least expensive way to connect a set of

cities, terminals, computers, etc.

16

Example

Problem
• A town has a set of houses

 and a set of roads

• A road connects 2 and only

 2 houses

• A road connecting houses u and v has a repair

 cost w(u, v)

Goal: Repair enough (and no more) roads such
that:

1. Everyone stays connected
 i.e., can reach every house from all other houses

2. Total repair cost is minimum

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

17

Minimum Spanning Trees

• A connected, undirected graph:

– Vertices = houses, Edges = roads

• A weight w(u, v) on each edge (u, v)  E

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Find T  E such that:

1. T connects all vertices

2. w(T) = Σ(u,v)T w(u, v) is

 minimized

18

Properties of Minimum Spanning Trees

• Minimum spanning tree is not unique

• MST has no cycles – see why:

– We can take out an edge of a cycle, and still have

the vertices connected while reducing the cost

• # of edges in a MST:

– |V| - 1

Brute Force MST

• Brute Force option:
1. For all possible spanning trees

i. Calculate the sum of the edge weights

ii. Keep track of the tree with the minimum weight.

• Step i) requires N-1 time, since each tree
will have exactly N-1 edges.

• If there are M spanning trees, then the total
cost will O(MN).

• Consider a complete graph, with N(N-1)
edges. How big can M be?

Brute Force MST

• For a complete graph, it has been shown

that there are NN-2 possible spanning trees!

• Alternatively, given N items, you can build
NN-2

• distinct trees to connect these items.

Greedy MST

• There are many approaches to computing a
minimum spanning tree. We could try to detect
cycles and remove edges, but the two
algorithms we will study build them from the
bottom-up in a greedy fashion.

• Kruskal’s Algorithm – starts with a forest of single
node trees and then adds the edge with the
minimum weight to connect two components.

• Prim’s Algorithm – starts with a single vertex and then
adds the minimum edge to extend the spanning
tree.

22

Growing a MST – Generic Approach

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

• Grow a set A of edges (initially

empty)

• Incrementally add edges to A

such that they would belong

 to a MST

– An edge (u, v) is safe for A if and

only if A  {(u, v)} is also a subset

of some MST

Idea: add only “safe” edges

23

Generic MST algorithm

1. A ← 

2. while A is not a spanning tree

3. do find an edge (u, v) that is safe for A

4. A ← A  {(u, v)}

5. return A

• How do we find safe edges?

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

24

S

V - S

Finding Safe Edges

• Let’s look at edge (h, g)

– Is it safe for A initially?

• Later on:

– Let S  V be any set of vertices that includes h but not

g (so that g is in V - S)

– In any MST, there has to be one edge (at least) that

connects S with V - S

– Why not choose the edge with minimum weight (h,g)?

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

25

Definitions

• A cut (S, V - S)

is a partition of vertices

into disjoint sets S and V - S

• An edge crosses the cut

(S, V - S) if one endpoint is in S

and the other in V – S

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

S

V- S 

S

 V- S

26

Definitions (cont’d)

• A cut respects a set A

 of edges  no edge

 in A crosses the cut

• An edge is a light edge

 crossing a cut  its weight is minimum over all

edges crossing the cut

– Note that for a given cut, there can be > 1 light

 edges crossing it

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

S

V- S 

S

 V- S

27

Theorem

• Let A be a subset of some MST (i.e., T), (S, V - S) be a

cut that respects A, and (u, v) be a light edge crossing

(S, V-S). Then (u, v) is safe for A.

Proof:

• Let T be an MST that includes A

– edges in A are shaded

• Case1: If T includes (u, v), then

 it would be safe for A

• Case2: Suppose T does not include

the edge (u, v)

• Idea: construct another MST T’

that includes A  {(u, v)}

u

v

S

V - S

28

u

v

S

V - S

Theorem - Proof

• T contains a unique path p between u and v

• Path p must cross the

 cut (S, V - S) at least

 once: let (x, y) be that edge

• Let’s remove (x,y)  breaks

 T into two components.

• Adding (u, v) reconnects the components

 T’ = T - {(x, y)}  {(u, v)}

x

y

p

29

Theorem – Proof (cont.)

T’ = T - {(x, y)}  {(u, v)}

Have to show that T’ is an MST:

• (u, v) is a light edge

  w(u, v) ≤ w(x, y)

• w(T ’) = w(T) - w(x, y) + w(u, v)

 ≤ w(T)

• Since T is a spanning tree

 w(T) ≤ w(T ’)  T’ must be an MST as well

u

v

S

V - S

x

y

p

30

Theorem – Proof (cont.)

Need to show that (u, v) is safe for A:

i.e., (u, v) can be a part of an MST

• A  T and (x, y)  T 

 (x, y)  A  A T’

• A  {(u, v)}  T’

• Since T’ is an MST

 (u, v) is safe for A

u

v

S

V - S

x

y

p

31

Prim’s Algorithm

• The edges in set A always form a single tree

• Starts from an arbitrary “root”: VA = {a}

• At each step:

– Find a light edge crossing (VA, V - VA)

– Add this edge to A

– Repeat until the tree spans all vertices

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

32

How to Find Light Edges Quickly?

Use a priority queue Q:

• Contains vertices not yet

 included in the tree, i.e., (V – VA)

– VA = {a}, Q = {b, c, d, e, f, g, h, i}

• We associate a key with each vertex v:

 key[v] = minimum weight of any edge (u, v)

 connecting v to VA

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

w1

w2

Key[a] = min(w1,w2)

a

33

How to Find Light Edges Quickly?

(cont.)
• After adding a new node to VA we update the weights of all

the nodes adjacent to it

 e.g., after adding a to the tree, k[b]=4 and k[h]=8

• Key of v is  if v is not adjacent to any vertices in VA

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

34

Example

 0        

Q = {a, b, c, d, e, f, g, h, i}

VA = 

Extract-MIN(Q)  a

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [b] = 4  [b] = a

key [h] = 8  [h] = a

 4      8 

Q = {b, c, d, e, f, g, h, i} VA = {a}

Extract-MIN(Q)  b

  

 

  

 

 

 

4

8

35

4 



8  

8



Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [c] = 8  [c] = b

key [h] = 8  [h] = a - unchanged

 8     8 

Q = {c, d, e, f, g, h, i} VA = {a, b}

Extract-MIN(Q)  c

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [d] = 7  [d] = c

key [f] = 4  [f] = c

key [i] = 2  [i] = c

 7  4  8 2

Q = {d, e, f, g, h, i} VA = {a, b, c}

Extract-MIN(Q)  i





4 



8  

8

7

4

2

36

Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [h] = 7  [h] = i

key [g] = 6  [g] = i

 7  4 6 8

Q = {d, e, f, g, h} VA = {a, b, c, i}

Extract-MIN(Q)  f

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [g] = 2  [g] = f

key [d] = 7  [d] = c unchanged

key [e] = 10  [e] = f

 7 10 2 8

Q = {d, e, g, h} VA = {a, b, c, i, f}

Extract-MIN(Q)  g

4 7



8  4

8

2

7 6

4 7



7 6 4

8

2

2

10

37

Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [h] = 1  [h] = g

 7 10 1

Q = {d, e, h} VA = {a, b, c, i, f, g}

Extract-MIN(Q)  h

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

7 10

Q = {d, e} VA = {a, b, c, i, f, g, h}

Extract-MIN(Q)  d

4 7

10

7 2 4

8

2

1

4 7

10

1 2 4

8

2

38

Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [e] = 9  [e] = f

 9

Q = {e} VA = {a, b, c, i, f, g, h, d}

Extract-MIN(Q)  e

Q =  VA = {a, b, c, i, f, g, h, d, e}

4 7

10

1 2 4

8

2 9

39

PRIM(V, E, w, r)

1. Q ← 

2. for each u  V

3. do key[u] ← ∞

4. π[u] ← NIL

5. INSERT(Q, u)

6. DECREASE-KEY(Q, r, 0) ► key[r] ← 0

7. while Q  

8. do u ← EXTRACT-MIN(Q)

9. for each v  Adj[u]

10. do if v  Q and w(u, v) < key[v]

11. then π[v] ← u

12. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap

operations:

O(VlgV)

Executed O(E) times total

Constant

Takes O(lgV)

O(ElgV)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV)

40

Using Fibonacci Heaps

• Depending on the heap implementation, running time

 could be improved!

Prim’s Algorithm

• Prim’s algorithm finds a minimum cost spanning tree
by selecting edges from the graph one-by-one as
follows:

• It starts with a tree, T, consisting of a single starting
vertex, x.

• Then, it finds the shortest edge emanating from x that
connects T to the rest of the graph (i.e., a vertex not in
the tree T).

• It adds this edge and the new vertex to the tree T.
• It then picks the shortest edge emanating from the

revised tree T that also connects T to the rest of the
graph and repeats the process.

Prim’s Algorithm Abstract

Consider a graph G=(V, E);

Let T be a tree consisting of only the starting vertex
x;

while (T has fewer than I V I vertices)

{

find a smallest edge connecting T to G-T;

add it to T;

}

Prim’s Algorithm

2 19

9

1

5

17

13

25
14

8

21

Start here

2 19

9

5

13

17
25

14
8

1?21

Prim’s Algorithm

1

2 19

9

5

13

17
25

14
8

21

Prim’s Algorithm

1

Prim’s Algorithm

19

9

5

13

17
25

14
8

21 1

2

Prim’s Algorithm

2 19

9

5

13

17
25

14
8

21 1

Prim’s Algorithm

2 19

9

5

13

17
25

14
8

21 1

Prim’s Algorithm

2 19

9

5

13

17
25

14
8

21 1

Prim’s Algorithm

2 19

9

5

13

17
25

14
8

21 1

51

Prim’s Algorithm

• Prim’s algorithm is a “greedy” algorithm

– Greedy algorithms find solutions based on a sequence

of choices which are “locally” optimal at each step.

• Nevertheless, Prim’s greedy strategy produces a

globally optimum solution!

– See proof for generic approach (i.e., slides 12-15)

52

A different instance of the generic approach

• A is a forest containing connected
components
– Initially, each component is a single

vertex

• Any safe edge merges two of
these components into one
– Each component is a tree

u

v

S

V - S

u

v

tree1

tree2

(instance 1)

(instance 2)

53

Kruskal’s Algorithm

• How is it different from Prim’s algorithm?

– Prim’s algorithm grows one

 tree all the time

– Kruskal’s algorithm grows

 multiple trees (i.e., a forest)

 at the same time.

– Trees are merged together

 using safe edges

– Since an MST has exactly |V| - 1

 edges, after |V| - 1 merges,

 we would have only one component

u

v

tree1

tree2

54

We would add

edge (c, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Kruskal’s Algorithm

• Start with each vertex being its

own component

• Repeatedly merge two

components into one by

choosing the light edge that

connects them

• Which components to consider

at each iteration?

– Scan the set of edges in

monotonically increasing order by

weight

Kruskal’s Algorithm

• Greedy algorithm to choose the edges as follows.

Step 1 First edge: choose any edge with the minimum weight.

Step 2 Next edge: choose any edge with minimum weight from those
not yet selected. (The subgraph can look disconnected at this
stage.)

Step 3 Continue to choose edges of minimum weight from those not
yet selected, except do not select any edge that creates a
cycle in the subgraph.

Step 4 Repeat step 3 until the subgraph connects all vertices of the
original graph.

56

Example

1. Add (h, g)

2. Add (c, i)

3. Add (g, f)

4. Add (a, b)

5. Add (c, f)

6. Ignore (i, g)

7. Add (c, d)

8. Ignore (i, h)

9. Add (a, h)

10. Ignore (b, c)

11. Add (d, e)

12. Ignore (e, f)

13. Ignore (b, h)

14. Ignore (d, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

1: (h, g)

2: (c, i), (g, f)

4: (a, b), (c, f)

6: (i, g)

7: (c, d), (i, h)

8: (a, h), (b, c)

9: (d, e)

10: (e, f)

11: (b, h)

14: (d, f)

{g, h}, {a}, {b}, {c}, {d}, {e}, {f}, {i}

{g, h}, {c, i}, {a}, {b}, {d}, {e}, {f}

{g, h, f}, {c, i}, {a}, {b}, {d}, {e}

{g, h, f}, {c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}

Kruskal’s Algorithm

A

C

D
E

1

7

7.5

8

3

4

4.5
F 9.5

10

1.5

B

Use Kruskal’s algorithm to find a minimum spanning tree for the graph.

Kruskal’s Algorithm

Solution
First, choose ED (the smallest weight).

A

C

D
E

1

7

7.5

8

3

4

4.5
F 9.5

10

1.5

B

Kruskal’s Algorithm

Solution
Now choose BF (the smallest remaining weight).

A

CB

D
E

1

7

7.5

8

3

4

4.5
F 9.5

10

1.5

Kruskal’s Algorithm

Solution
Now CD and then BD.

A

CB

D
E

1

7

7.5

8

3

4

4.5
F 9.5

10

1.5

Kruskal’s Algorithm

Solution
Note EF is the smallest remaining, but that would create a cycle. Choose AE
and we are done.

A

CB

D
E

1

7

7.5

8

3

4

4.5
F 9.5

10

1.5

Kruskal’s Algorithm

Solution
The total weight of the tree is 16.5.

A

CB

D
E

1

7

7.5

8

3

4

4.5
F 9.5

10

1.5

Kruskal’s Algorithm

• Question:

1. How do we know we are finished?

A

CB

D
E

1

7

7.5

8

3

4

4.5
F 9.5

10

1.5

Kruskal’s Algorithm

• Trace of Kruskal's algorithm for
the undirected, weighted graph:

The minimum cost is: 24

Kruskal’s Algorithm

2 19

9

1

5

17

13

25
14

8

21

2 19

9

5

13

17
25

14
8

1?21

Kruskal’s Algorithm

1

2 19

9

5

13

17
25

14
8

1?21

Kruskal’s Algorithm

1

Kruskal’s Algorithm

2 19

9

5

13

17
25

14
8

1?21 1

Kruskal’s Algorithm

2 19

9

5

13

17
25

14
8

21 1?1

Kruskal’s Algorithm

2 19

9

5

13

17
25

14
8

21 1?1

Kruskal’s Algorithm

2 19

9

5

13

17
25

14
8

21 1?1

Kruskal’s Algorithm

2 19

9

5

13

17
25

14
8

21 1?1

73

We would add

edge (c, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Implementation of Kruskal’s Algorithm

• Uses a disjoint-set data

structure (see Chapter

21) to determine whether

an edge connects

vertices in different

components

74

Operations on Disjoint Data Sets

• MAKE-SET(u) – creates a new set whose only

member is u

• FIND-SET(u) – returns a representative element

from the set that contains u

– Any of the elements of the set that has a particular

property

– E.g.: Su = {r, s, t, u}, the property is that the element be

the first one alphabetically

 FIND-SET(u) = r FIND-SET(s) = r

– FIND-SET has to return the same value for a given set

75

Operations on Disjoint Data Sets

• UNION(u, v) – unites the dynamic sets that

contain u and v, say Su and Sv

– E.g.: Su = {r, s, t, u}, Sv = {v, x, y}

 UNION (u, v) = {r, s, t, u, v, x, y}

• Running time for FIND-SET and UNION

depends on implementation.

• Can be shown to be α(n)=O(lgn) where α() is a

very slowly growing function (see Chapter 21)

76

1. A ← 

2. for each vertex v  V

3. do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6. do if FIND-SET(u)  FIND-SET(v)

7. then A ← A  {(u, v)}

8. UNION(u, v)

9. return A

Running time: O(V+ElgE+ElgV)=O(ElgE) – dependent on

the implementation of the disjoint-set data structure

KRUSKAL(V, E, w)

O(V)

O(ElgE)

O(E)

O(lgV)

77

1. A ← 

2. for each vertex v  V

3. do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6. do if FIND-SET(u)  FIND-SET(v)

7. then A ← A  {(u, v)}

8. UNION(u, v)

9. return A

- Running time: O(V+ElgE+ElgV)=O(ElgE)

- Since E=O(V2), we have lgE=O(2lgV)=O(lgV)

KRUSKAL(V, E, w) (cont.)

O(V)

O(ElgE)

O(E)

O(lgV)

O(ElgV)

Kruskal’s Algorithm – Time complexity

• Steps

– Initialize forest

– Sort edges

• Check edge for cycles O(|V|)

O(|V|)

O(|E|log|E|)

x

O(|V|2)

O(|V|+|E|log|E|+|V|2)

O(|V|2 log|V|)

• Number of edges

– Total

– Since |E| = O(|V|2)

O(|V|)

– Thus we would class MST as O(n2 log n) for a graph with n vertices

– This is an upper bound, some improvements on this are known.

79

Kruskal’s Algorithm

• Kruskal’s algorithm is a “greedy” algorithm

• Kruskal’s greedy strategy produces a globally

optimum solution

• Proof for generic approach

 applies to Kruskal’s

 algorithm too
u

v

S

V - S

x

y

Prim’s and Kruskal’s Algorithms

• It is not necessary that Prim's and Kruskal's algorithm
generate the same minimum-cost spanning tree.

• For example for the graph shown on the right:

• Kruskal's algorithm results in the following minimum cost
spanning tree:

– The same tree is generated by Prim's algorithm if the start vertex is
any of: A, B, or D.

• However if the start vertex is C the minimum cost spanning
tree generated by Prim’s algorithm is:

81

Problem 1

• (Exercise 23.2-3, page 573) Compare Prim’s algorithm

with and Kruskal’s algorithm assuming:

(a) sparse graphs:

In this case, E=O(V)

Kruskal:

 O(ElgE)=O(VlgV)

Prim:

 - binary heap: O(ElgV)=O(VlgV)

 - Fibonacci heap: O(VlgV+E)=O(VlgV)

82

Problem 1 (cont.)

(b) dense graphs

 In this case, E=O(V2)

Kruskal:

 O(ElgE)=O(V2lgV2)=O(2V2lgV)=O(V2lgV)

Prim:

 - binary heap: O(ElgV)=O(V2lgV)

 - Fibonacci heap: O(VlgV+E)=O(VlgV+V2)=O(V2)

83

• (Exercise 23.2-4, page 574): Analyze the

running time of Kruskal’s algorithm when

weights are in the range [1 … V].

Problem 2

1. A ← 

2. for each vertex v  V

3. do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6. do if FIND-SET(u)  FIND-SET(v)

7. then A ← A  {(u, v)}

8. UNION(u, v)

9. return A

O(lgV)

O(V)

O(ElgE)

O(E)

- Sorting can be done in O(E) time (e.g., using counting sort)

- However, overall running time will not change, i.e, O(ElgV)

Problem 2 (cont.)

85

Problem 3

• Suppose that some of the weights in a connected

graph G are negative. Will Prim’s algorithm still

work? What about Kruskal’s algorithm? Justify

your answers.

– Yes, both algorithms will work with negative weights.

Review the proof of the generic approach; there is no

assumption in the proof about the weights being

positive.

86

Problem 4

• (Exercise 23.2-2, page 573) Analyze Prim’s

algorithm assuming:

 (a) an adjacency-list representation of G

 O(E.lgV)

 (b) an adjacency-matrix representation of G

 O(E.lgV+V2)

87

PRIM(V, E, w, r)

1. Q ← 

2. for each u  V

3. do key[u] ← ∞

4. π[u] ← NIL

5. INSERT(Q, u)

6. DECREASE-KEY(Q, r, 0) ► key[r] ← 0

7. while Q  

8. do u ← EXTRACT-MIN(Q)

9. for each v  Adj[u]

10. do if v  Q and w(u, v) < key[v]

11. then π[v] ← u

12. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap

operations:

O(VlgV)

Executed O(E) times

Constant

Takes O(lgV)

O(ElgV)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV)

88

PRIM(V, E, w, r)

1. Q ← 

2. for each u  V

3. do key[u] ← ∞

4. π[u] ← NIL

5. INSERT(Q, u)

6. DECREASE-KEY(Q, r, 0) ► key[r] ← 0

7. while Q  

8. do u ← EXTRACT-MIN(Q)

9. for (j=0; j<|V|; j++)

10. if (A[u][j]=1)

11. if v  Q and w(u, v) < key[v]

12. then π[v] ← u

13. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap

operations:

O(VlgV)

Executed O(V2) times total

Constant

Takes O(lgV) O(ElgV)

Total time: O(VlgV + ElgV+V2) = O(ElgV+V2)

O(lgV)

89

Problem 5

• Find an algorithm for the “maximum” spanning

tree. That is, given an undirected weighted

graph G, find a spanning tree of G of maximum

cost. Prove the correctness of your algorithm.

90

Problem 5

• Find an algorithm for the “maximum” spanning

tree. That is, given an undirected weighted

graph G, find a spanning tree of G of maximum

cost. Prove the correctness of your algorithm.

– Consider choosing the “heaviest” edge (i.e., the edge

associated with the largest weight) in a cut. The

generic proof can be modified easily to show that this

approach will work.

– Alternatively, multiply the weights by -1 and apply

either Prim’s or Kruskal’s algorithms without any

modification at all!

91

Problem 6

• (Exercise 23.1-8, page 567) Let T be a MST of

a graph G, and let L be the sorted list of the

edge weights of T. Show that for any other MST

T’ of G, the list L is also the sorted list of the

edge weights of T’.

T, L={1,2} T’, L={1,2}

A cable company want to connect five villages to their network,
which currently extends to the market town of Avenford. What is
the minimum length of cable needed?

Avenford Fingley

Brinleigh Cornwell

Donster

Edan

2

7

4
5

8
4

5

3

6

8

Problem 7: Prim’s algorithm with an
Adjacency Matrix

A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

Note, this example has outgoing edges on the columns and incoming on

the rows, so it is the transpose of adjacency matrix mentioned in class.

Actually, it is an undirected, so AT = A.

Problem 7: Prim’s algorithm with an
Adjacency Matrix

A B C D E F
A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

•Start at vertex A. Label columnA “1” .

•Delete row A

•Select the smallest entry in columnA (AB, length 3)

1

Brinleigh

3

Avenford

Problem 7: Prim’s algorithm with an
Adjacency Matrix

A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2
•Label column B “2”

•Delete row B

•Select the smallest uncovered entry in either column

A or column B (AE, length 4)

Brinleigh

3

Avenford

4

Edan

A B C D E F
A - 3 - - 4 7

3B - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8
E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2•Label column E “3”

•Delete row E

•Select the smallest uncovered entry in either

columnA, B or E (ED, length 2)

3

Brinleigh

3

Avenford

Edan

4

Donster

2

A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2 4 3
•Label column D “4”

•Delete row D

•Select the smallest uncovered entry in either

columnA, B, D or E (DC, length 4)

Avenford

Brinleigh

3

Edan

4

Donster

2

Cornwell

4

A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2 5 4 3
•Label column C “5”

•Delete row C

•Select the smallest uncovered entry in

either

column A, B, D, E or C (EF, length 5)

Avenford

Brinleigh

3

Edan

4

Donster

2

Cornwell

4
Fingley

5

A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2 5 4 3 6
FINALLY

•Label column F “6”

•Delete row F

Avenford

Brinleigh

3

Edan

4

Donster

2

Cornwell

4
Fingley

5

A B C D E F

A - 3 - - 4 7

B 3 - 5 - - 8

C - 5 - 4 - 6

D - - 4 - 2 8

E 4 - - 2 - 5

F 7 8 6 8 5 -

1 2 5 4 3 6
FINALLY

•Label column F “6”

•Delete row F

The spanning tree is shown in the diagram

Length 3 + 4 + 4 + 2 + 5 = 18Km

Avenford

Brinleigh

3

Edan

4

Donster

2

Cornwell

4
Fingley

5

Quiz 1

• Find the minimum spanning tree using Kruskal’s Algorithm.

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

List the edges in increasing order:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

Quiz 2

Quiz 3

60

b

c

d

a
e

f

1

11

4

12

2

14

3

7

6

10

• Generate 2 minimum spanning tree’s for the
following graph using Prim’s and Kruskal’s
algorithms

5

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Starting from the left, add the edge to the tree if it does not close up a circuit with the edges
chosen up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

Solution to Quiz 1

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen up to that
point. Notice that the edge of weight 45 would close a circuit, so we skip it.

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen
up to that point:

20, 25, 30, 32, 35, 38, 40, 45, 50, 52, 55, 60, 70, 70, 88, 90, 100, 110, 115, 120

115 90 52

55

32

20

38

70

88

35

120

110

60

30

70

40
45

100

50

25

A

The tree contains every vertex, so it is a spanning tree. The total weight is 395

Done

!

Summary Kruskal vs. Prim

• Both are Greedy algorithms
– Both take the next minimum edge
– Both are optimal (find the global min)

• Different sets of edges considered
– Kruskal – all edges
– Prim – Edges from Tree nodes to rest of G.

• Both need to check for cycles
• Both can terminate early
• Kruskal is order of O(|E| log|V|)
• Prim is order of is O(|V|2) (adjacency matrix

implementation).

	Slide 1: Analysis and Design of Algorithms
	Slide 2: Tree
	Slide 3: Number of Vertices
	Slide 4: Connected Graph
	Slide 5: Spanning Tree
	Slide 6: Non-Connected Graphs
	Slide 7: Minimum Spanning Trees
	Slide 8: Finding a Spanning Tree
	Slide 9: Minimum Spanning Tree
	Slide 10: Minimum Spanning Tree
	Slide 11: Applications of MST
	Slide 12: Problem: Laying Telephone Wire
	Slide 13: Wiring: Naïve Approach
	Slide 14: Wiring: Better Approach
	Slide 15: Applications of MST
	Slide 16: Example
	Slide 17: Minimum Spanning Trees
	Slide 18: Properties of Minimum Spanning Trees
	Slide 19: Brute Force MST
	Slide 20: Brute Force MST
	Slide 21: Greedy MST
	Slide 22: Growing a MST – Generic Approach
	Slide 23: Generic MST algorithm
	Slide 24: Finding Safe Edges
	Slide 25: Definitions
	Slide 26: Definitions (cont’d)
	Slide 27: Theorem
	Slide 28: Theorem - Proof
	Slide 29: Theorem – Proof (cont.)
	Slide 30: Theorem – Proof (cont.)
	Slide 31: Prim’s Algorithm
	Slide 32: How to Find Light Edges Quickly?
	Slide 33: How to Find Light Edges Quickly? (cont.)
	Slide 34: Example
	Slide 35: Example
	Slide 36: Example
	Slide 37: Example
	Slide 38: Example
	Slide 39: PRIM(V, E, w, r)
	Slide 40: Using Fibonacci Heaps
	Slide 41: Prim’s Algorithm
	Slide 42: Prim’s Algorithm Abstract
	Slide 43: Prim’s Algorithm
	Slide 44: Prim’s Algorithm
	Slide 45: Prim’s Algorithm
	Slide 46: Prim’s Algorithm
	Slide 47: Prim’s Algorithm
	Slide 48: Prim’s Algorithm
	Slide 49: Prim’s Algorithm
	Slide 50: Prim’s Algorithm
	Slide 51: Prim’s Algorithm
	Slide 52: A different instance of the generic approach
	Slide 53: Kruskal’s Algorithm
	Slide 54: Kruskal’s Algorithm
	Slide 55: Kruskal’s Algorithm
	Slide 56: Example
	Slide 57: Kruskal’s Algorithm
	Slide 58: Kruskal’s Algorithm
	Slide 59: Kruskal’s Algorithm
	Slide 60: Kruskal’s Algorithm
	Slide 61: Kruskal’s Algorithm
	Slide 62: Kruskal’s Algorithm
	Slide 63: Kruskal’s Algorithm
	Slide 64: Kruskal’s Algorithm
	Slide 65: Kruskal’s Algorithm
	Slide 66: Kruskal’s Algorithm
	Slide 67: Kruskal’s Algorithm
	Slide 68: Kruskal’s Algorithm
	Slide 69: Kruskal’s Algorithm
	Slide 70: Kruskal’s Algorithm
	Slide 71: Kruskal’s Algorithm
	Slide 72: Kruskal’s Algorithm
	Slide 73: Implementation of Kruskal’s Algorithm
	Slide 74: Operations on Disjoint Data Sets
	Slide 75: Operations on Disjoint Data Sets
	Slide 76: KRUSKAL(V, E, w)
	Slide 77: KRUSKAL(V, E, w) (cont.)
	Slide 78: Kruskal’s Algorithm – Time complexity
	Slide 79: Kruskal’s Algorithm
	Slide 80: Prim’s and Kruskal’s Algorithms
	Slide 81: Problem 1
	Slide 82: Problem 1 (cont.)
	Slide 83: (Exercise 23.2-4, page 574): Analyze the running time of Kruskal’s algorithm when weights are in the range [1 … V].
	Slide 84: Problem 2 (cont.)
	Slide 85: Problem 3
	Slide 86: Problem 4
	Slide 87: PRIM(V, E, w, r)
	Slide 88: PRIM(V, E, w, r)
	Slide 89: Problem 5
	Slide 90: Problem 5
	Slide 91: Problem 6
	Slide 92: Problem 7: Prim’s algorithm with an Adjacency Matrix
	Slide 93: Problem 7: Prim’s algorithm with an Adjacency Matrix
	Slide 94
	Slide 95: A B C D E F
	Slide 96
	Slide 97: A B C D E F
	Slide 98: A B C D E F
	Slide 99: A B C D E F
	Slide 100: A B C D E F
	Slide 101: Quiz 1
	Slide 102: Quiz 2
	Slide 103: Quiz 3
	Slide 104: Solution to Quiz 1
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: Done!
	Slide 115: Summary Kruskal vs. Prim

