Analysis and Design of
Algorithms

Graphs
Part Il: Finding Shortest Paths

Instructor: Morteza Zakeri
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Shortest Path Problems

« How can we find the shortest route between two
points on a road map?

* Model the problem as a graph problem:
— Road map is a weighted graph:
vertices = cities
edges = road segments between cities
edge weights = road distances

— Goal: find a shortest path between two vertices (cities)



Shortest Path Problem

Input:

— Directed graph G = (V, E)

— Weight functionw : E - R
Weight of path p =(vg, V4, . . ., V)
Kk
w(p) = ZW(Vi—l’Vi)
=1

Shortest-pat

5(u, v) = min
<

h weight from u to v:

‘w(p) : u L v if there exists a path from u to v

| otherwise

Note: there might be multiple shortest paths from uto v
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Variants of Shortest Path

« Single-pair shortest path
— Find a shortest path from u to v for given vertices u and v

* Single-source shortest paths

— G = (V, E) = Find a shortest path from a given source
vertex s to each vertex v e V

- Dijkstra and Bellman-Ford algorithm algorithms

* Single-destination shortest paths

— Find a shortest path to a given destination vertex t from
each vertex v

— Reversing the direction of each edge = single-source



Variants of Shortest Paths (cont'd)

« All-pairs shortest-paths

— Find a shortest path from u to v for every pair of
vertices u and v

- Floyd-Warshall algorithm
. O(VS)



Negative-Weight Edges

* Negative-weight edges may form

negative-weight cycles

the source, then 3(s, v) Is not properly®

defined!

— Keep going around the cycle, and get

w(s, V) = - o« for all v on the cycle



Negative-Weight Edges

* S — a: only one path
5(s,a) =w(s,a)=3

* S — b: only one path
3(s, b) =w(s, a) + w(a, b) =-1

* S — c: Infinitely many paths

(s, c),{(s,c,d, c){scdcdc
cycle has positive weight (6 - 3 = 3)
(S, €) Is shortest path with weight &(s, b) =w(s,c) =5



Negative-Weight Edges

* s — e: Infinitely many paths: N
— (s, e), (s,e, f,e) (s, e ferfe

b
-4
©
d

3 4
— cycle (e, f, e) has negative ) i’@é@h
weight: 3
AN 3 7
3+ (-6)=-3
— Can find paths from s to e with e ©f
arbitrarily large negative h i
weights > ]
, 1, 1 not
- 3(s, €) = - o = no shortest path 3 regcﬂlable
exists between s and e from s

— Similarly: 3(s, f) = - oo,

J
5(s, g) = - 5(s, h) = 8(s, i) = 8(s, j) =
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Cycles

Can shortest paths contain cycles?

Negative-weight cycles  Nol!
— Shortest path is not well defined
Positive-weight cycles: Nol

— By removing the cycle, we can get a shorter path

Zero-weight cycles
— No reason to use them

— Can remove them to obtain a path with same weight



Optimal Substructure Theorem

Given:
— Aweighted, directed graph G = (V, E)

— Aweight function w: E —» R,

— Ashortest path p = (vq, v,, . . ., v fromv;tov, Vv

— Asubpath of p: p; = (v;, Vi, - - ., v, with 1 <i < j <k
Then: p;; Is a shortest path from v; to v;

j
o — Pai Pij Pk
Proof: p = vy~ v vy A& vy

w(p) = w(py) + w(p;;) + wlpy)
Assume 3 p;i' from v; to v; with w(p;;’) < w(p;;)

= w(p’) = w(py) + w(p;;') + wlpjk) < w(p) contradiction!
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Triangle Inequality
For all (u, v) € E, we have: C@m
O(s,v)<0(s,u)+0d(u,v)

- If u I1s on the shortest path to v we have the

equality sign @\

11



Single-Source Shortest Paths Algorithms

« Bellman-Ford algorithm
— Negative weights are allowed

— Negative cycles reachable from the source are not
allowed.

* Dijkstra’s algorithm
— Negative weights are not allowed

e Operations common in both algorithms:
— Initialization
— Relaxation

12



Shortest-Paths Notation

For each vertex v € V.
* O(s, V). shortest-path weight
 d[v]: shortest-path weight estimate
— Initially, d[v]=
— d[v]=>9(s,v) as algorithm progresses
* 7[v] = predecessor of v on a shortest y
path from s

— If no predecessor, wt[v] = NIL
— 1 Induces a tree—shortest-path tree
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Initialization

Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

1.
2
3.
4. d[s] < O

for eachv e V
do d[v] « w0
n[v] « NIL

All the shortest-paths algorithms start with
INITIALIZE-SINGLE-SOURCE
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Relaxation Step

 Relaxing an edge (u, v) = testing whether we
can improve the shortest path to v found so far
by going through u
If d[v] > d[u] + w(u, v)
we can improve the shortest path to v

= d[v]=d[ul+w(u,v) —
— n[v] — u After relaxation:

e d[v] < d[u] + w(u, v)
@ RELAX(u, v, w)

u, v, w)

2
@ RELAX(
Q G no change

15



Bellman-Ford Algorithm

» Single-source shortest path problem
— Computes 0(s, v) and nfv] forall v e V

« Allows negative edge weights - can detect
negative cycles.

— Returns TRUE if no negative-weight cycles are
reachable from the source s

— Returns FALSE otherwise = no solution exists

16



Bellman-Ford Algorithm (cont'd)

ldea:
— Each edge is relaxed |V-1| times by making |V-1]
passes over the whole edge set.

— To make sure that each edge Is relaxed exactly
|V — 1| times, it puts the edges in an unordered list
and goes over the list |V — 1| times.

(t. x), (L. y), (t. 2), (X, 1), (¥, X), (¥ 2), (2, X), (2, 5), (S, 1), (S, Y)
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BELLMAN-FORD(V, E, w, s)

Pass 1 ! 5 X

E: (t, x), (t, y), (t, 2), (X, 1), (¥, X), (¥, 2), (2, %), (2, 8), (5, 1), (S, Y)
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Example «x e 200 0.0 0:2,@0. 96069

Pass 1
(from
previous
slide)

Pass 3
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Detecting Negative Cycles

(perform extra test after V-1 iterations)

« foreachedge (u,v) eE
. do if d[v] > d[u] + w(u, V)
then return FALSE

e return TRUE

15t pass

2"d pass

(s,b) (b,c) (c,s)

Look at edge (s, b):

d[b] =-1
d[s] + w(s, b) =-4

— d[b] > d[s] + w(s, b)

20



O NOoO O DR

BELLMAN-FORD(V, E, w, s)

INITIALIZE-SINGLE-SOURCE(V, s) — o(V)
fori—1to|V]|-1 —O(V)
do for each edge (u,v) e E  ~—O(E)
do RELAX(u, v, w)
for each edge (u,v) € E — O(E)
do if d[v] > d[u] + w(u, V)
then return FALSE
return TRUE

O(VE)

Running time: O(V+VE+E)=0(VE)
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Shortest Path Properties
« Upper-bound property

— We always have d[v] 2 0 (s, v) for all v.

— The estimate never goes up — relaxation only lowers the
estimate
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Shortest Path Properties

 Convergence property

If s~.u — v is a shortest path, and if d[u] = &(s, u)
at any time prior to relaxing edge (u, v), then
d[v] = 0(s, v) at all times after relaxing (u, v).

« If d[v] > O(s, v) = after relaxation:
d[v] = d[u] + w(u, v)
div]=5+2=7

» Otherwise, the value remains

unchanged, because it must have

been the shortest path value
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Shortest Path Properties

» Path relaxation property
Let p = (vy, V4, - . ., V) be a shortest path from
S =V, to v,. If we relax, in order, (vq, Vq), (V4, Vo), . ..
, (Vi1s Vi), even intermixed with other relaxations,
then d[v,] =0 (s, Vv).

Vg
dlv,] =0 (s, V)

dlvs] =0 (s, Vs)

24



Correctness of Belman-Ford Algorithm

 Theorem: Show that d[v]= 0 (s, v), for every v,
after |V-1| passes.

Case 1: G does not contain negative cycles
which are reachable from s

— Assume that the shortest path from sto v is
p={(Vo Vg, - - -, V), where s=v, and v=v,, k<|V-1]

— Use mathematical induction on the number of
passes I to show that:
divi|=0 (s, v) , i=0,1,..., k

25



Correctness of Belman-Ford Algorithm
cont.

Base Case: 1=0d[vy]=0 (s, vg)=0 (S, S)=0

Inductive Hypothesis: d[v,;]= 0 (s, vi,)

Inductive Step: d[vi]= 0 (s, V)

After relaxing (v, V)):
O dlvi]=d[v,,]+w=0 (S, V;;)*W=0 (S, V)
dlv,4]= 0 (s, vi.4)

Vi

From the upper bound property: d[v;]2 0 (s, V)

Therefore, d[v;]=0 (s, V)
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Correctness of Belman-Ford Algorithm

(cont.)

« Case 2: G contains a negative cycle which is
reachable from s

v, /( \(’W C=<V 4 Vi v k} Is a negative cycle
~ /Y

k
Z “.(1}_—1- fr’) <0
i=1

¥ - < Y
O S T \_/
Vg = Vi
Proof by After relaxing (v;_;.v;): o d v < d [vig] + w(vi_q.v;)
Contradiction: ; L
supposethe or > .« d v;] < d[vii]+ S wv,_i.v,)
algorithm i=1 i=1 i=1
returns a k k k
solution or Zi w(vig,v) 20 (_le d [vi] = Zl d [vic1])
I= = i=

Contradiction! 21



Dijkstra’s Algorithm

» Single-source shortest path problem:
— No negative-weight edges: w(u, v) >0, V (u,v) e E
« Each edge is relaxed only once!

« Maintains two sets of vertices:

1_."'

N

S V-S

d[v]=0 (s, V) d[v]>3 (s, V)

28



Dijkstra’s Algorithm (cont.)

* Vertices In V — S reside in a min-priority queue

— Keys in Q are estimates of shortest-path weights d[u]

 Repeatedly select a vertex u € V — S, with the
minimum shortest-path estimate d|u]

* Relax all edges leaving u

Steps

1) Extract a vertex « from Q (1.e.. u has the highest priority)

2) Insert u to § _
3) Relax all edges leaving u

4) Update O

29



Dijkstra (G, w, S)
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Example (cont.)

S=<> Q=<s,t,X,2,y>

S=<s,y> Q=<z,t,x>

S=<s> Q=<y,tx,z>

S=<s,y,z> Q=<t,x>

31



Example (cont.)

S=<s,y,z,t> Q=<x>

S=<s,y,Z,t,x> Q=<>
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Dijkstra (G, w, S)

INITIALIZE-SINGLE-SOURCE(V, s) «— A(V)
S—
Q «— V[G] <«— O(V) build min-heap
while Q # & <«— Executed O(V) times
do u « EXTRACT-MIN(Q) — O(lgV)
S —Su{u}
for each vertex v e Adj[u] «~— O(E) times'
do RELAX(u, v, w) (total)

O(VigV)

. O(ElgV)

Update Q (DECREASE_KEY)«—O(IgV),

Running time: O(VIgV + ElgV) = O(ElgV)
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Binary Heap vs Fibonacci Heap

Running time depends on the implementation of the heap

EXTRACT-MIN DECREASE-KEY Total
_ O(ElgV)
binary heap 0(lgV) O(lgV)
Fibonacci heap O(lgV) O(1) O(VigV + E)
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Dijkstra's Shortest Path Algorithm

* Find shortest path from s to t.
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Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm

decrease key

24

N

\'

/

44
distance label ﬂ oX 15



Dijkstra's Shortest Path Algorithm

delmin
oX 9

24

N

\'

44
distance label ﬂ oX 15



Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm
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Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm
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Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm




Dijkstra's Shortest Path Algorithm
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Correctness of Dijskstra’s Algorithm

« For each vertex u € V, we have d[u] = d(s, u) at the time
when u is added to S.

Proof:

 Let u be the first vertex for which d[u] = d(s, u) when
added to S

* Let's look at a true shortest path p from s to u:
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Correctness of Dijskstra’s Algorithm

S
\ /_Ehﬁ“no_t_afhortestfath froms o u What is the value of d[u]?
[ 7 s---@ LISV w.)= B(5.) (v
Ry
| i
| A B
) f ) What is the value of d[u’]?
|I “1\ L“»..Irr’_“\ / f‘a S\
\ \ k\f | J"II ! —hl'k_E__,fl

d[u’]=d[V’]+w(Vv',u’)= d(s,V')+w(V’,u’)

e ——

" .y -
w -
= &
i -
- -
% -
- -
— ~ i -
=

N

Since U’ is in the shortest path of u: d[u’]<d(s,u)
- du’]<d[u]

Using the upper bound property: d[u]>d(s,u)

Coﬁtradiction!
Priority Queue Q: <u, ..., U, ....> (i.e., d[u]<...<d[u’]<... )8



Dijskstra’s Algorithm Summary

* Given a weighted directed graph, we can find
the shortest distance between two vertices
by:

— starting with a trivial path containing the initial
vertex

— growing this path by always going to the next
vertex which has the shortest current path




All-Pairs Shortest Paths

« Given:
— Directed graph G = (V, E)
— Weight functionw : E —- R

« Compute:

— The shortest paths between all pairs
of vertices in a graph

— Result: an n x n matrix of shortest-
path distances o(u, v)

58



All-Pairs Shortest Paths - Solutions

« Run BELLMAN-FORD once from each vertex:
- O(V?2E), which is O(V4) if the graph is dense
(E = ©(V?))
* |If no negative-weight edges, could run
Dijkstra’s algorithm once from each vertex:
- O(VEIlgV) with binary heap, O(V3IlgV) if the graph is
dense
« We can solve the problem in O(V3), with no
elaborate data structures

59



Floyd’s Algorithm

All pairs shortest path



All Eairs shortest Qath

The problem: find the shortest path between every pair of
vertices of a graph

The graph: may contain negative edges but no negative
cycles.

A representation: a weight matrix where
W(i,))=0 if i=j.
W(i,])=c If there is no edge between i and j.
W(i,j)="weight of edge”
Note: we have shown principle of optimality applies to
shortest path problems

61



The weight matrix and the graph

62



The subproblems

How can we define the shortest distance d;; In
terms of “smaller” problems?

One way Is to restrict the paths to only include
vertices from a restricted subset.

Initially, the subset is empty.

Then, it is iIncrementally increased until it includes
all the vertices.

63



The subproblems

- Let D™[i,j]=weight of a shortest path from v; to v,
using only vertices from {v,,v,,...,v,} as
Intermediate vertices in the path

— DO=wW
— DM=D which is the goal matrix

« How do we compute DK from Dk-1) ?

64



The Recursive Definition:

Case 1: A shortest path from v; to v, restricted to using only vertices from
{V1,V,,...,V, } @s Intermediate vertices does not use v,. Then
D®[i,j]= D&, j].

Case 2: A shortest path from v; to v; restricted to using only vertices from
{V{,V,,...,v,} as intermediate vertices does use v,. Then DWJi,jj= D&
D[i,k]+ D&-D[k,j].

Shortest path using intermediate vertices

Vi, .. Vil ,@

Shortest Path using intermediate vertices {V, =V, ,}

65



The recursive definition

e Since
D®i,j]= D®1[i,j] or
D®i,j]= D®[i,k]+ D&k, ]].
We conclude:
D®[i,j]= min{ D®[i,j], D&L[i,k]+ D&k, }.

Shortest path using intermediate vertices
{V,,... V, } >

\N
-——-

@”—\\ f’——N\ RS ”_i@
Shortest Path using intermediate vertices {V, V| _;}
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The pointer array P

Used to enable finding a shortest path
Initially the array contains O

Each time that a shorter path from i to j is found the k
that provided the minimum is saved (highest index node
on the path from i to )

To print the intermediate nodes on the shortest path a
recursive procedure that print the shortest paths from i
and k, and from k to j can be used

67



Floyd's Algorithm Using n+1 D matrices

Floyd//Computes shortest distance between all pairs of
//nodes, and saves P to enable finding shortest paths
1. DY «~ W //initialize D array to W [ ]

2. P« 0 [/linitialize P array to [O]
3.fork«1ton

dofori<«1ton
doforj<« 1ton

if (D0, j]>D i, k]+D*“ [k,j])
then DK[i,j]«<D*1[i,k]+D*1[Kk,j]
PLI,J] <k
else D[ i,]] « D11, j]

© 00N OB
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Example
DO =
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oo L 2 3
1] O 4 5 k=1
9 0 o Vertex 1 can be
Intermediate node
00 -3 0 | —
1 2 3
, 11 0 4 5 D1[2,3] = min( D°[2,3], D°[2,1]+D°[1,3] )
D= S T o | 7 f;”i”(“j)
3] » | -3 1] 0 )
1 2 3 D1[3,2] = min( D[3,2], D[3,1]+D°[1,2] )
110 0 0 = min (-3,x)
P= 2| 0 0 1 =-3
3| 0 0 0
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1 2 3
-1 0 4 5 k=2

2| 2 0 { Vertices 1, 2 can

3 o | 31 0 be intermediate
1 2 3
0 4 5 D2[1,3] = min( D[1,3], D![1,2]+D%[2,3] )
2 0 7 i Ersnin (5, 4+7)
11]-3]0 )
1 2 3
01010 D2[3,1] = min( D[3,1], DY[3,2]+D*[2,1] )
0 0 1 = min (cc, -3+2)
2 1 0|0 =-1
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2 3 k=3
i Vertices 1, 2, 3
c; (7) can be
Intermediate
1 2 3
D3 = 110 2 S D3[1,2] = min(D?[1,2], D?[1,3]+D?[3,2] )
2 0 7 =min (4, 5+(-3))
3/ -1 ] 3] 0 =2
1 2 3
11 0| 3] 0 D3[2,1] = min(D?[2,1], D[2,3]+D?3,1] )
p= 5 0 0 1 =min (2, 7+ (-1))
— -’
3/ 2101 0
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Floyd algorithm example
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Printing intermediate nodes on
shortest path from g to r

path(index g, r)

if (P[ g, r ]1=0) 1 2 3
path(q, P[q, r]) 1101310
printin( “v’+ P[g, r] =2 0] 0] 1
path(P[q, ], r) 5 0 0
return;

/Ino intermediate nodes
else return

Before calling path check DIq, r] < «, and
print node q, after the call to

path print node r
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Example




The final distance matrix and P

1 y 3 s 5 6
1| 0 2060 206) 46 3 1
>l 260 0 26 46 56 1

D=z | oy 26 0 2541
4 | 46y 48 2 0 3 33
s 2 o5& S4) 3 0 A
&1 1 1 1 %3 40

The values in parenthesis are the non zero P values.
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he call tree for Path(1, 4)

\
Print
V3

P(6, 3)=0 P(3, 4)=0

The intermediate nodes on the shortest path from 1 to 4 are v6, v3.
The shortest path is v1, v6, v3, v4.

77



Floyd's Algorithm: Using Tow D matrices

Floyd
1.D « W //initialize D array to W [ ]
2. P« 0 [/linitialize P array to [O]
3.fork<« 1ton
// Computing D’ from D

4 do fori<«<1ton

5 doforj<« 1ton

6. It (D[1,)]>D[1,k]+D[k,]])

7. then DTi,j]«< D[i,k]+D[k,]]
38 Pl[i,]] «k;

0. elseDi,j]]«<D[1,]]

10. Move D’ to D.

Floyd’s Algorithm 78



Can we use only one D matrix?

 D[1,]]depends only on elements in the kth
column and row of the distance matrix.

 We will show that the kth row and the kth
column of the distance matrix are unchanged
when DX is computed

 This means D can be calculated in-place

Floyd’s Algorithm 79



The main diagonal values

 Before we show that kth row and column of
D remain unchanged we show that the main
diagonal remains O

» DO[jT=min{ D&Y}, D*B[jk ]+ D]

ki 1}
=min{ 0, D&D[jk]+D&D[k,]}

=0
 Based on which assumption?

Floyd’s Algorithm 80



The kth column

« kth column of DX is equal to the kth column
of Dk1

 Intuitively true - a path from i to k will not
become shorter by adding k to the allowed
subset of intermediate vertices

« For all i, D®i k] =
= min{ D&-1[i k], D&-D[i,k]+ D&-D[k,k] }
= min { D&-Y[i k], D&-D[i,k]+0 }
= D& K]

Floyd’s Algorithm 81



The kth row

« kth row of DX is equal to the kth row of DX

For all j, D®[k,j] =
= min{ D&-Y[k,j], D&k k]+ D&D[k,j] }
= min{ D[ k,j ], 0+D&1[k,j]}
= Dk-D[ k,j ]

Floyd’s Algorithm 82



Floyd's Algorithm using a single D

Floyd
1.D « W /linitialize D array to W [ ]
2. P« 0 //initialize P array to [0]
3.fork« 1ton
dofori«<1ton
doforj«1ton
it (D[1,j]>D[I,k]+D[Kk,]])
then D[I,]]«< D[I,k]+D[Kk,]]
PLI T« K;

N OA

Floyd’s Algorithm 83



Application: Feasibility Problem

Linear Programming
max c;xy + crxy + - - - + ¢, x, (objective function)
subject to Ax < b (constraints)

- Simplex 1s a common approach used to solve the above problem

Feasibility problem

- Find x such that Ax < b

84



Application: Feasibility Problem (cont.)

* Special case of fesibility problem

- All constraints have the form x; — x; < by

X1 — X <3
1 0 ][~ 3
X2 — X3 <—2 or 1 —1 X2 <| -2
0 1| xs 2




Application: Feasibility Problem (cont.)

Constraint graph
- Assign one vertex per variable

- Assign one edge per constraint with weight b,

, . N WPk N
If }xj - X == bk then I\jléf’l ] - -1/’

- Include an extra vertex and edges from this vertex to every other
vertex

- Set the weights of the extra edges to zero
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Application: Feasibility Problem (cont.)

11—:('2{_:0
Tl—.‘-'lfﬁ"*_f-—l
12-1’551
13—:'('155
14—:{'1{_:4

—1
X — X3 <—3

—3

(feasible solution: -5, -3. 0. -1. -4)
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Application: Feasibility Problem (cont.)

Theorem: If G contains no negative cycles, then

(O(Vg,Vy), O(Vg,Vs),..., O(Vy,V,)) IS a feasible solution.

N
:'\}ITDF/': —
— | e
|I\q- \____,f""-f I./-—--\'I
T T, I. T\" |
) AN
.' xy
lx - _-:\‘
l//'
L Vi)
N

For every (v;, V)): 8(Vo,V))S 8(Vo,Vy)+W(V,, V)
or 0(V,Vj) - 0(Vp,V;) = W(V;, Vi)

Setting X;= 0(Vy,V;) and x;= 0(vy,V;), we have
Xi-XiS W(V;,V;)
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Application: Feasibility Problem (cont.)

 Theorem: If G contains a negative cycle, then
there Is no feasible solution.

v il

N
Y2

k
% (v, 1) < 0
E/g ™ \ / _ =1

- - N
_F/r —_ _____/ﬁ"- r”'ﬂ_—_k"‘a_ I N \)

\ C=<Vq Vo Ve Is a negative cycle
o o

".-’»] —Vk
Xy — X1 SW(vy. v
X3 — X2 S W(va.,v3

Proof by contradiction: suppose
there exist a solution, then: X = XL < ”(‘ kLY £)

X — 1‘# =W 1 i v
- Add them up:

k-1
0<% w(v,,vy,;) Contradiction !!
i=1 89



Application: Feasibility Problem (cont.)

* Size of the constraint graph
- It we have m constraints with » unknowns (A4Ax < b, 4 1s m X n)
V=n+land E=m+n

- Running time: O(VE) = O((n + 1)(m + n)) = O(n* + nm)
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Problem 1

Write down weights for the edges of the following graph,
so that Dijkstra’s algorithm would not find the correct
shortest path from s to t.
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Problem 1

Write down weights for the edges of the following graph,
so that Dijkstra’s algorithm would not find the correct
shortest path from s to t.

O -O——0"
\A -1
1st iteration \Y

gii 2" iteration 3 jteration 4t iteration
el d[w]=2 _

d:V:: d[U] 0

S={s} Q={u,v,w} S={s,u} Q={v,w} S={s,uv} O=fw} g:_{{?u,v,w}

* d[w] is not correct!

* d[u] should have converged when u was included in S! o



Problem 2

 (Exercise 24.3-4, page 600) We are given a
directed graph G=(V,E) on which each edge
(u,v) has an associated value r(u,v), which Is a
real number in the range O0<sr(u,v) <1 that
represents the reliability of a communication
channel from vertex u to vertex v.

 We Interpret r(u,v) as the probablility that the
channel from u to v will not fail, and we assume
that these probabillities are independent.

 Give an efficient algorithm to find the most
reliable path between two given vertices.
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Problem 2 (cont.)

« Solution 1: modify Dijkstra’s algorithm

— Perform relaxation as follows:
If d[v] < d[u] w(u,v) then
d[v] = d[u] w(u,V)

— Use "EXTRACT_MAX" instead of “EXTRACT_MIN”
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Problem 2 (cont.)

» Solution 2: use Dijkstra’s algorithm without any
modifications!
— r(u,v)=Pr( channel from u to v will not fail)
— Assuming that the probabilities are independent, the
reliability of a path p=<v,,v,,...,v, > Is:

r(V1,Vo)r(Va,Va) . Vi1, Vi)

— We want to find the channel with the highest reliability,

h max, [ ] r(u.v)

(u,v)ep
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Problem 2 (cont.)

» But Dijkstra’s algorithm computes

min, »  w(u,v)

(uv)ep

« Take the Ig

lg(max, [] r(u,v))=max, > lg(r(u,v))

(u,v)ep (u,v)ep
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Problem 2 (cont.)

« Turn this into a minimization problem by taking
the negative:

—min, > lg(r(u,v))=min >  —lg(r(u,v))

(u,v)ep (u,v)ep

* Run Dijkstra’s algorithm using

w(u,v) = —1g(r(u,v))
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Problem 3

Included Distance Fath
i -
B
=
O
F F
F

* Give the shortest path tree for node A for this
graph using Dijkstra’s shortest path algorithm.
Show your work with the 3 arrays given and
draw the resultant shortest path tree with edge
weights included.




& Quiz 1

TIME

* Consider the directed graph shown in the
figure below. There are multiple shortest
paths between vertices S and T. Which one
will |
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Quiz 2

* Calculate shortest paths from A to every other
vertex using dijkstra algorithm




Quiz 3

* Show the result of Dijkstra's algorithm from F
toD
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