
Analysis and Design of

Algorithms

Graphs

Part 1: Definition and Representations

Instructor: Morteza Zakeri

2

What is a Graphs?

Definition = a set of nodes (vertices) with

edges (links) between them.

• G = (V, E) - graph

• V = set of vertices V = n

• E = set of edges E = m

– Binary relation on V

– Subset of V x V ={(u,v): u V, v V}

1 2

3 4

Graphs

• Graph theory starts in 18th century with Leonhard Euler

– Euler wrote a paper about the Königsberg bridges
problem

– Since then graphs have been studied extensively.

3

Königsberg Bridges Problem

• Königsberg (now Kaliningrad, Russia)
– A river divided the city into 4 regions
– Seven bridges connected the regions

• Problem: is there a path in which:
– Cross each bridge once (and only once)
– the trip ends in the same place it began

• Euler proved: It is not possible
– Such a cycle exists if: 1-connected graph 2-all

node-degrees even

4

Networks: Real-world graphs

• A collection of nodes (vertices)

• And a collection of edges (links) connecting nodes
• A network model treats all nodes and links the same

– But there are heterogeneous networks. Name a few?

• The spatial location of nodes is arbitrary (in
visualization)

• Networks are abstractions of connection and relation

• A vast array of phenomena have been modeled by
networks

• In mathematics, networks are called graphs

• The entities are nodes, and the links are edges

5

Networks in the Past and Now

• Graphs have been used in the past
to model existing networks
– e.g., networks of highways, social networks

– Usually, these networks were small

• Networks Now:
– More and larger networks appear.

– Networks of thousands, millions, or billions of
nodes

– impossible to visualize

6

Why Networks? Why Now?

• Products of technological advancement

– e.g., Internet, Web

• Result of our ability to collect more, better,
and more complex data

– e.g., gene regulatory networks

• Data availability

– Rise of the Web 2.0 and Social media

7

Why Networks? Why Now? (cont’d)

• Universality
– Networks from various domains of science, nature,

and technology are more similar than one would
expect

• Shared vocabulary between fields
– Computer Science, Social Sciences, Physics,

Economics, Statistics, Biology, Political Science…

• Advances in computational power
– Better hardware, cloud, clusters, distributed

computing, …

8

Many examples of networks

• Technological Networks

• Social Networks

• Networks of Information

• Biological Networks

• And …

9

TECHNOLOGICAL NETWORKS

10

Railway Networks

Source: TRTA, March 2003 - Tokyo rail map

11

The Airline Networks

12

The Internet Map

13

Other Technological Networks?

• Internet

• Telecommunication Networks, e.g., telephone
network

• Power Grid
– The network of high-voltage transmission lines

– that provide long-distance transport of electric power

• Transportation networks
– Airlines, Railway, …

• Delivery and distribution networks
– Gas, oil, water, Post, …

14

BIOLOGICAL NETWORKS

15

Neural Networks

16

Brain Networks

17

Protein-Protein Interaction

18

Food Webs (Ecology)

19

Other Biological Networks

• Metabolic Networks

• Gene Regulatory Network

• Phylogenetic Trees

• Metabolic Pathways

20

SOCIAL NETWORKS

21

Friendship Networks

22

Online Social Networks

23

Co-authorship Network

24

Co-stardom Networks

• The collaboration graph of film
actors

• Who is the co-star hub of Iranian films?!

25

Other Social Networks?

• Affiliation Networks

• Messaging Networks

– Emails, phone calls, instant messaging, …

• Trust Network

• Non-human relations

– Dolphins, …

26

NETWORKS OF INFORMATION

27

Information Networks

• World-wide web (WWW)

• Citation Networks

– Papers, patents, …

– Usually acyclic

– Authors Citations: a social network extracted from
papers

• P2P

• …

28

Webgages

• Webpages connected by
hyperlinks

29

Citation Networks

30

OTHER KINDS OF NETWORKS

31

Other Networks

• NLP: Words networks

• Economical Networks

– Money Transactions

– Trade Networks

– Industry

– Financial Networks

• Tourism

• …

32

Words Network

• E.g., wordnet

• Other words network?
– Co-occurrences (in sentences, poems, …)

– …

33

NETWORK QUESTIONS

34

Network Questions

• Structural

• Communities

• Dynamics of

• Dynamics on

• Algorithms

• Outlook

35

Network Questions: Structural

• How many connections does the average node
have?

• Are some nodes more connected than others?

• Is the entire network connected?

• How many links are there between nodes?

– Average distance, network diameter, …

• Are there clusters or groupings within which the
connections are particularly strong?

36

Network Questions: Structural (cont’d)

• Is there any hierarchal structure?

• What is the best way to characterize a complex
network?

• How can we tell if two networks are “different” or
“similar”?

• Are there useful ways of classifying/categorizing
nodes?

• Are there useful ways of classifying/categorizing
networks?

• What are the important nodes and links?

37

Example

• In social networks,
it’s nice to be a hub

38

Example

• But it Depends on
What You’re
Sharing!

• In social networks,
it’s nice to be a hub

39

Example: Small Worlds

• A friend of a friend is also frequently a friend

• Only six hops separate any two people in the world

Experimenter, 2015

Thriller/Documentary

40

Network Questions: Communities

• Are there clusters in which the connections are particularly
strong?

• How to discover communities, especially in large
networks?

• How can we tell if these communities are statistically
significant?

• What do these clusters tell us in specific applications?

• How we can optimize the number of communities?

41

Network Questions: Dynamics Of

• How can we model the growth of networks?

• What are the important features of networks that our

models should capture?

• Are there “universal” models of network growth?

– What details matter and what details don’t?

• How is the time-evolution of a network?

– How about the reverse-time?! (e.g., sampling)

• How the network properties affected by its dynamical

• evolution?

42

Network Questions: Dynamics On

• How do diseases, computer viruses, innovations,
rumors, revolutions, and opinions propagate on
networks?

• What properties of networks are relevant to the
answer of the above question?

• If you wanted to prevent (or encourage) spread of
something on a network, what should you do?

43

Network Questions: Dynamics On

• What types of networks are robust to random attack or
failure?

• What types of networks are robust to intentional and
cascading attack?

44

Network Questions: Algorithms

• What types of networks are searchable or navigable?

• What are good ways to visualize complex networks?

• What are the optimal algorithms for computing
network metrics?

• How does google page rank work?

• If the internet were to double in size, would it still
work?

45

46

Applications

• Applications that involve not only a set of items, but also the

connections between them

Computer networks

Circuits

Schedules

Hypertext

Maps

5

Graph Samples

• Geography:
– Cities and roads

– Airports and flights (diameter  20 !!)

• Publications:
– The co-authorship graph

• E.g. the Erdos distance

– The reference graph

• Phone calls: who calls whom

• Almost everything can be modeled as a graph !

Graph Terminology

49

Terminology

• Directed vs Undirected graphs

50

Terminology (cont’d)

• Complete graph

– A graph with an edge between each pair of vertices

• Subgraph

– A graph (V’, E’) such that V’V and E’E

• Path from v to w

– A sequence of vertices <v0, v1, …, vk> such that

v0=v and vk=w

• Length of a path

– Number of edges in the path

1 2

3 4

path from v1 to v4

<v1, v2, v4>

51

Terminology (cont’d)

• w is reachable from v

– If there is a path from v to w

• Simple path

– All the vertices in the path are distinct

• Cycles

– A path <v0, v1, …, vk> forms a cycle if v0=vk and k≥2

• Acyclic graph

– A graph without any cycles 1 2

3 4

cycle from v1 to v1

<v1, v2, v3,v1>

52

Terminology (cont’d)

Connected and Strongly Connected

19

Connectivity

• Directed graphs are strongly connected if there is
a path from any one vertex to any other

Undirected graphs are connected if there is a path between
any two vertices

20

Connectivity

• A complete graph has an edge between every pair of
vertices

Directed graphs are weakly connected if there is a path

between any two vertices, ignoring direction

21

Connectivity

A (strongly) connected component is a subgraph
which is (strongly) connected

CC in an undirected graph:

SCC in a directed graph:

56

Terminology (cont’d)

• A tree is a connected, acyclic undirected graph

57

Terminology (cont’d)

• A bipartite graph is an undirected graph

G = (V, E) in which V = V1 + V2 and there are

edges only between vertices in V1 and V2

1 2

3

4

4

9

7
6

8

V1 V2

Bipartiteness

Graph G = (V,E) is bipartite iff it can be partitioned into two sets of
nodes A and B such that each edge has one end in A and the
other end in B

Alternatively:

• Graph G = (V,E) is bipartite iff all its cycles have even length

• Graph G = (V,E) is bipartite iff nodes can be coloured using
two colours

Question: given a graph G, how to test if the graph is bipartite?

Note: graphs without cycles (trees) are bipartite

bipartite:

non bipartite

22

Distance and Diameter

• The distance between two nodes, d(u,v), is the length
of the shortest paths, or if there is no path

• The diameter of a graph is the largest distance
between any two nodes

• Graph is strongly connected iff diameter <

Subgraphs

• A subgraph of a graph G = (V, E) is a graph H =(V’, E’) where V’
is a subset of V and E’ is a subset of E

• Example applications: solving sub-problems within a graph
Representation example: V = {u, v, w}, E = ({u, v}, {v, w}, {w, u}},
H1 , H2

u

v w

uu

wv v

H1
H2G

Graph - Isomorphism

• G1 = (V1, E2) and G2 = (V2, E2) are isomorphic if:

• There is a one-to-one and onto function f from V1 to V2

with the property that

• a and b are adjacent in G1 if and only if f (a) and f (b) are

adjacent in G2, for all a and b in V1.

• Function f is called isomorphism

Example applications: In chemistry, to find if two compounds have

the same structure

Graph - Isomorphism

Representation example: G1 = (V1, E1) , G2 = (V2, E2)

f(u1) = v1, f(u2) = v4, f(u3) = v3, f(u4) = v2,

u1

u3
u4

u2

v3
v4

v1 v2

Representation of Graphs

Representation of Graphs

• Two standard ways.

– Adjacency Lists.

– Adjacency Matrix.

a

dc

b

dc

1
a

2
b

3 4

1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0

a

b

c

d

b d c

a c

d a b

a c

65

Graph Representation

• Adjacency list representation of G = (V, E)

– An array of V lists, one for each vertex in V

– Each list Adj[u] contains all the vertices v that are

adjacent to u (i.e., there is an edge from u to v)

– Can be used for both directed and undirected graphs

1 2

5 4

3

2 5 /

1 5 3 4 /

1

2

3

4

5

2 4

2 5 3 /

4 1 2

Undirected graph

Adjacency Lists
• Consists of an array Adj of |V| lists.

• One list per vertex.

• For u V, Adj[u] consists of all vertices adjacent to u.

dc

a b a

b

c

d

b

c

d

d c

a

dc

b

If weighted, store weights also in adjacency
lists.

a

b

c

d

b

a

d

d c

c

a b

a c

67

Properties of Adjacency-List

Representation

• Sum of “lengths” of all adjacency lists

– Directed graph:

• edge (u, v) appears only once (i.e., in the

list of u)

– Undirected graph:

• edge (u, v) appears twice (i.e., in the lists of

both u and v)

1 2

5 4

3

Undirected graph

1 2

3 4

Directed graph

E 

2 E 

68

Properties of Adjacency-List

Representation
• Memory required

– (V + E)

• Preferred when

– The graph is sparse: E  << V 2

– We need to quickly determine the nodes

adjacent to a given node.

• Disadvantage

– No quick way to determine whether there is

an edge between node u and v

• Time to determine if (u, v)  E:

– O(degree(u))

• Time to list all vertices adjacent to u:

– (degree(u))

1 2

5 4

3

Undirected graph

1 2

3 4

Directed graph

69

Graph Representation

• Adjacency matrix representation of G = (V, E)

– Assume vertices are numbered 1, 2, … V 

– The representation consists of a matrix A V x V :

– aij = 1 if (i, j)  E

0 otherwise

1 2

5 4

3

Undirected graph

1

2

3

4

5

1 2 3 4 5

0 1 10 0

1 1 1 10

1 10 0 0

1 1 10 0

1 1 10 0

For undirected

graphs, matrix A

is symmetric:

aij = aji

A = AT

70

Properties of Adjacency Matrix

Representation
• Memory required

– (V2), independent on the number of edges in G

• Preferred when

– The graph is dense: E is close to V 2

– We need to quickly determine if there is

an edge between two vertices

• Time to determine if (u, v)  E:

– (1)

• Disadvantage

– No quick way to determine the vertices

adjacent to another vertex

• Time to list all vertices adjacent to u:

– (V)

1 2

5 4

3

Undirected graph

1 2

3 4

Directed graph

71

Weighted Graphs

• Graphs for which each edge has an associated weight

w(u, v)

w: E → R, weight function

• Storing the weights of a graph

– Adjacency list:

• Store w(u,v) along with vertex v in

u’s adjacency list

– Adjacency matrix:

• Store w(u, v) at location (u, v) in the matrix

72

Weighted Graphs

Some graph operations

adjacency matrix

O(1)

adjacency lists

O(e)insertEdge

isEdge

#successors?

#predecessors?

O(1)

O(V)

O(V)

O(e)

O(e)

O(E)

Traversing a graph

Traversing a graph

ny

chi
dcla

atl

bos

• Where to start?

• Will all vertices be visited?

• How to prevent multiple visits?

Graph-searching Algorithms

• Searching a graph

– Systematically follow the edges of a graph to
visit the vertices of the graph.

• Used to discover the structure of a graph.

• Standard graph-searching algorithms.

– Breadth-first Search (BFS).

– Depth-first Search (DFS).

Breadth-first Search (BFS)

• Input: Graph G = (V, E), either directed or undirected,
and source vertex s  V.

• Output:
– d[v] = distance (smallest # of edges, or shortest path) from s to

v, for all v  V. d[v] =  if v is not reachable from s.

– [v] = u such that (u, v) is last edge on shortest path s v.
• u is v’s predecessor.

– Builds breadth-first tree with root s that contains all reachable
vertices.

• Expands the frontier between discovered and
undiscovered vertices uniformly across the
breadth of the frontier.
– A vertex is “discovered” the first time it is encountered

during the search.

– A vertex is “finished” if all vertices adjacent to it have
been discovered.

• Colors the vertices to keep track of progress.
– White – Undiscovered.

– Gray – Discovered but not finished.

– Black – Finished.

Breadth-first Search (BFS)

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u] white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q,s)

10 while Q  

11

12

13

14

15

16

17

18

do u  dequeue(Q)

for each v in Adj[u]

do if color[v] = white

then color[v]  gray

d[v]  d[u] + 1

[v]  u

enqueue(Q,v)

color[u]  black

white: undiscovered
gray: discovered black:
finished

Q: a queue of discovered
vertices
color[v]: color of v
d[v]: distance from s to v
[u]: predecessor of v

initialization

access source s

Example (BFS)

0

r



t



u





v

  

w x y

s

Q: s
0

Example (BFS)

1 0

1

t



u





v

r s

w x

 

y

Q: w r
1 1

Example (BFS)

1 0

1

2

u





v

r s t

w x

2 

y

Q: r t x
1 2 2

Example (BFS)

1 0

1

2

2

u



r s t

v w x

2 

y

Q: t x v
2 2 2

Example (BFS)

1 0

1

2 3

2

r s t u

v w x

2 

y

Q: x v u
2 2 3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v u y
2 3 3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u y
3 3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y
3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: 

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree

Depth-first Search

(DFS)• Explore edges out of the most recently discovered
vertex v.

• When all edges of v have been explored, backtrack to
explore other edges leaving the vertex from which v
was discovered.

• “Search as deep as possible first.”

• Continue until all vertices reachable from the original
source are discovered.

• If any undiscovered vertices remain, then one of them
is chosen as a new source and search is repeated from
that source.

Depth-first Search
• Input: G = (V, E), directed or undirected. No source

vertex given!

• Output:

– 2 timestamps on each vertex. Integers between 1 and 2|V|.

• d[v] = discovery time (v turns from white to gray)

• f [v] = finishing time (v turns from gray to black)

– [v] : predecessor of v = u, such that v was discovered during
the scan of u’s adjacency list.

• Coloring scheme for vertices as BFS. A vertex is

– “discovered” the first time it is encountered during the search.

– A vertex is “finished” if it is a leaf node or all vertices adjacent
to it have been finished.

Pseudo-

codeDFS(G)

1. for each vertex u V[G]

2. do color[u]white

3. [u] NIL

4. time 0

5. for each vertex u V[G]

6. do if color[u] = white

7. then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

1. color[u] GRAY // White vertex u
has been discovered

2. time time + 1

3. d[u] time

4. for each v Adj[u]

5. do if color[v] = WHITE

6. then [v] u

7. DFS-Visit(v)

8. color[u] BLACK // Blacken u;
it is finished.

9. f[u] time  time + 1

Example (DFS)

1/

u v w

x y z

Example (DFS)

1/ 2/

u v w

x y z

Example (DFS)

1/ 2/

u v w

x

3/

y z

Example (DFS)

1/ 2/

4/

x

3/

y

u v w

z

Example (DFS)

1/ 2/

4/

x

3/

y

u v w

z

B

Example (DFS)

1/ 2/

4/5

x

3/

y

u v w

z

B

Example (DFS)

1/ 2/

4/5

x

3/6

y

u v w

z

B

Example (DFS)

1/ 2/7

4/5

x

3/6

y

u v w

z

B

Example (DFS)

1/ 2/7

4/5

x

3/6

y

u v w

z

BF

Example (DFS)

1/8 2/7

4/5

x

3/6

y

u v w

z

BF

Example (DFS)

1/8 2/7 9/

4/5

x

3/6

y

u v w

z

BF

Example (DFS)

1/8 2/7 9/

4/5

x

3/6

y

u v w

z

BF C

Example (DFS)

1/8 2/7 9/

4/5

x

3/6

y

10/

z

u v w

BF C

Example (DFS)

1/8 2/7 9/

4/5

x

3/6

y

10/

z

u v w

BF C

B

Example (DFS)

1/8 2/7 9/

4/5

x

3/6

y

10/11

z

u v w

BF C

B

Example (DFS)!!!

1/8 2/7 9/12

4/5

x

3/6

y

10/11

z

u v w

BF C

B

Recursive DFS Algorithm

Traverse()
for all nodes X

visited[X]= False

DFS(1st node)

DFS(X)
visited[X] = True

for each successor Y of X

if (visited[Y] = False)

DFS(Y)

Quiz 1

• The Breadth First Search algorithm has been
implemented using the queue data structure.
One possible order of visiting the nodes of the
following graph is

62

A

B

C

D

MNOPQR

NQMPOR

QMNPRO

QMNPOR

63

Quiz 2

• BFS?

• DFS?

Quiz 3

• Consider the following graph
Among the following sequences
I)a b e g h f
II)a b f e h g
III)a b f h g e
IV)a f g h b e Which are depth first

traversals of the above graph

64

A

B

C

D

I, II and IV only

I and IV only

II, III and IV only

I, III and IV only

Quiz 4

• Suppose depth first search is executed on the graph below starting at
some unknown vertex. Assume that a recursive call to visit a vertex is
made only after first checking that the vertex has not been visited earlier.
Then the maximum possible recursion depth (including the initial call) is ?

65

A

B

C

D

17

18

19

20

Quiz 5

• Discuss the Order of BFS and DFS algorithms,
with respect to V and E.

66

Exercises

116

Problem 1

• Given an adjacency-list representation, how long

does it take to compute the out-degree of every

vertex?

• How long does it take to compute the in-degree

of every vertex?

117

Problem 1

• Given an adjacency-list representation, how long

does it take to compute the out-degree of every

vertex?

– For each vertex u, search Adj[u] → Θ(E)

2 5 /

1 5 3 4 /

1

2

3

4

5

2 4

2 5 3 /

4 1 2

118

Problem 1

• How long does it take to compute the in-degree

of every vertex?

– For each vertex u,

search entire list of edges → Θ(VE)

2 5 /

1 5 3 4 /

1

2

3

4

5

2 4

2 5 3 /

4 1 2

119

Problem 2

• The transpose of a graph G=(V,E) is the graph

GT=(V,ET), where ET={(v,u)єV x V: (u,v) є E}. Thus, GT

is G with all edges reversed.

(a) Describe an efficient algorithm for computing GT from

G, both for the adjacency-list and adjacency-matrix

representations of G.

(b) Analyze the running time of each algorithm.

120

Problem 2 (cont’d)

Adjacency matrix

for (i=1; i<=V; i++)

for(j=i+1; j<=V; j++)

if(A[i][j] && !A[j][i]) {

A[i][j]=0;

A[j][i]=1;

}

O(V2) complexity

0 1 10 0

0 0 1 10

1 00 0 0

1 1 10 0

0 0 10 0

1

2 3 4 5

2

3

4

5

1

121

Problem 2 (cont’d)

Adjacency list

Allocate V list pointers for GT (Adj’[])

for(i=1; i<=V, i++)

for every vertex v in Adj[i]

add vertex i to Adj’[v]

O(V)

O(E)

Total time: O(V+E)

2 5 /

1 5 3 4 /

1

2

3

4

5

2 4

2 5 3 /

4 1 2

122

Problem 3

• When adjacency-matrix representation is used, most

graph algorithms require time Ω(V2), but there are some

exceptions.

• Show that determining whether a directed graph G

contains a universal sink (a vertex of in-degree |V|-1

and out-degree 0) can be determined in time O(V).

Example

123

Problem 3 (cont.)

• Example

0 0 00 1

1 0 1 00

0 11 0 0

0 0 00 0

0 0 10 0

1

2 3 4 5

2

3

4

5

1

1

2

3
4

5

124

Problem 3 (cont.)

• How many sinks could a graph have?

• How can we determine whether a given vertex u

is a universal sink?

• How long would it take to determine whether a

given vertex u is a universal sink?

125

Problem 3 (cont.)

• How many sinks could a graph have?

– 0 or 1

• How can we determine whether a given vertex u

is a universal sink?

– The u-row must contain 0’s only

– The u-column must contain 1’s only

– A[u][u]=0

• How long would it take to determine whether a

given vertex u is a universal sink?

– O(V) time

126

Problem 3 (cont.)

Problem 3 (cont.)

• How long would it take to determine whether a

given graph contains a universal sink if you were

to check every single vertex in the graph?

• - O(V2)

• Can you come up with a O(V) algorithm?

127

128

Problem 3 (cont.)

• Observations

– If A[u][v]=1, then u cannot be a universal sink

– If A[u][v]=0, then v cannot be a universal sink

129

Problem 3 (cont.)

v1 v2

v4
v5

v3

0 1 1 1 1

0 0 0 1 1

0 1 0 1 1

0 0 0 0 1

0 0 0 0 0

v1 v2 v3 v4 v5

v1

v2

v3

v4

v5

• Loop terminates when i > |V| or j > |V|

• Upon termination, the only vertex that could be a sink is i

- If i > |V|, there is no sink

- If i < |V|, then j>|V|

* vertices k where 1 ≤ k < i can not be sinks

* vertices k where i < k ≤ |V| can not be sinks

