Analysis and Design of
Algorithms

Graphs
Part |: Definition and Representations

Instructor: Morteza Zakeri

o2 g =§
3 insbance &
g [} & 2 vertex ,_e E

8 7encef 38 0 pometshc;ds
|berabor“’° oHjocts case yeue nodes
heap arrag omectglmplemct}nb b e

brees = ° 1 nSw ev.,, DDDDD

gugg(e_gbl + random inberface 'g

no e,g!eg Neu Jline pnvabe>§
e java

sbnngalgorlbhm searchsmon ipe
aperuorsLabic s WG, ; %
1 cunenu'“""‘!?addhsb daba - 2 B s oo 5

° bhw

Jesult :8 Base 50
key Bableinser pﬂoa:g child
nex

What Is a Graphs?

Definition = a set of nodes (vertices) with
edges (links) between them.

« G=(V, E)-graph

. V =set of vertices |V |=n

« E-setofedges |E|l=m
— Binary relation on V
— Subset of VxV ={(u,v): u eV, v eV}

Graphs

— Euler wrote a paper about the Konigsberg bridges
problem

— Since then graphs have been studied extensively.

Konigsberg

* Konigsberg (now Kaliningrad, Russia)
— Ariver divided the city into 4 regions
— Seven bridges connected the regions
* Problem: is there a path in which:
— Cross each bridge once (and only once) Fad)
: . . Tl
— the trip ends in the same place it began o

* Euler proved: It is not possible

— Such a cycle exists if: 1-connected graph 2-all
node-degrees even

o

0 © O

Networks: Real-world grapIoO\sO o

&0 @

o 0

0 OOO

* A collection of nodes (vertices) ey ©

* And a collection of edges (links) connecting nodes
* A network model treats all nodes and links the same
— But there are heterogeneous networks. Name a few?

* The spatial location of nodes is arbitrary (in
visualization)

e Networks are abstractions of connection and relation

e Avast array of phenomena have been modeled by
networks

* In mathematics, networks are called graphs

* The entities are , and the links are edges

Networks in the Past and Now

* Graphs have been used in the past
to model existing networks

— e.g., networks of highways, social networks /

— Usually, these networks were small Ty
* Networks Now: !
— More and larger networks appear. i’ %
— Networks of thousands, millions, or billiofs 0
nodes

— impossible to visualize

Why Networks? Why Now?

* Products of technological advancement
—e.g., Internet, Web

e Result of our ability to collect more, better,
and more complex data

—e.g., gene regulatory networks

e Data availability
— Rise of the Web 2.0 and Social media

Why Networks? Why Now? (cont’'d)

* Universality

— Networks from various domains of science, nature,
and technology are more similar than one would
expect

* Shared vocabulary between fields

— Computer Science, Social Sciences, Physics,
Economics, Statistics, Biology, Political Science...

* Advances in computational power

— Better hardware, cloud, clusters, distributed
computing, ...

Many examples of networks

Technological Networks
Social Networks
Networks of Information

Biological Networks
And ...

TECHNOLOGICAL NETWORKS

10

Railway Networks

A B
el e L L
B N

D
Thru to Toride
uF
x5 2an Hikihune
Hikarigaoka Toshimaen
1 o o o s :‘:’ 1
St RSES (]
—_— Hon- Tr Messlise Thutrains run on Keisel Line
Thvu o Harmd i azumabashi + Narita-airport
Set Shewa Lre *AEER HESR
() Ogikubo
Tt 5
Miaka e
E
FATE
‘Shin-kden
0
Honanchd
EL
Thru trains run on Keio Line
Thu to
Hashimoto
L2
J
Thru to
lh«:s?,m
224 BAR ol nctastia Une
Pigoan
3 Bye Tyl Do Tk Lioe
Thru to Kikuna
| R
L
I Tokya Dimach Loe
RiE
]
Tyl g Lise
T
Desgreay Bignt Irtemctonal 2 anoesiport
© March 2003 TRTA

Source: TRTA, March 2003 - Tokyo rail map

11

The Airline Networks

Kriti -ﬁs;“\: (5

Cretr

The Internet Map

| Switzerland Spain B Japan B ?ggzirg't‘ion B vk [Unknown

Jj Germany B taly) Netherlands [l syeden [l USA

13

Other Technological Networks?

Internet

Telecommunication Networks, e.g., telephone
network

Power Grid
— The network of high-voltage transmission lines
— that provide long-distance transport of electric power

Transportation networks
— Airlines, Railway, ...

Delivery and distribution networks
— @as, oil, water, Post, ...

14

BIOLOGICAL NETWORKS

15

Neural Networks

L1
£
5

-
&

Brain Networks

17

Protein-Protein Interaction

18

Food Webs (Ecology)

Other Biological Networks

Metabolic Networks
Gene Regulatory Network
Phylogenetic Trees
Metabolic Pathways

20

SOCIAL NETWORKS

21

Networks

Friendship

22

Online Social Networks

‘ ":"1 L.\ke ‘
v i
<ol \‘e\p‘ - hh.llw

g+ BRCUmbICE TN,

facebook.

Cwitker cmm
~ Youll'lil:

interest -
Broadcast Yourself ™

23

Co-authorship Network

y | b/&%\} / A‘ :
//‘.\\»//://‘4’4“ ﬁ el X
s ":2%%‘\ o ,’}) “ ,\‘/‘/‘g'm 4
2 @D @ = e

' %@'&// e

AN,)7,
3 i i

,’ : ; @” ' ./’:-' - ‘?:;@\ = o
| ,

24

Co-stardom Networks

* The collaboration graph of film
actors

Other Social Networks?

Affiliation Networks
Messaging Networks

— Emails, phone calls, instant messaging, ...
Trust Network

Non-human relations
— Dolphins, ...

26

NETWORKS OF INFORMATION

27

Information Networks

World-wide web (WWW)

Citation Networks
— Papers, patents, ...
— Usually acyclic

— Authors Citations: a social network extracted from
papers

P2p

28

Webgages

Webpages connected by
hyperlinks

t

ﬁi\.“.ut
@ .ﬂ'
t.ii

Citation Networks

OTHER KINDS OF NETWORKS

31

Other Networks

NLP: Words networks

Economical Networks
— Money Transactions
— Trade Networks

— Industry

— Financial Networks

Tourism

32

Words Network

! 1 ! | P _
| gmup | | pemen <

* E.g., wordnet

e Other words network?
— Co-occurrences (in sentences, poems, ...)

ra h Y
| enbetance |

33

NETWORK QUESTIONS

34

Structural
Communities
Dynamics of
Dynamics on
Algorithms
Outlook

Network Questions

35

Network Questions: Structural

How many connections does the average node
have?

Are some nodes more connected than others?
Is the entire network connected?
How many links are there between nodes?

— Average distance, network diameter, ...

Are there clusters or groupings within which the
connections are particularly strong?

36

Network Questions: Structural (cont'd)

* |sthere any hierarchal structure?

* What is the best way to characterize a complex
network?

e How can we tell if two networks are “different” or
“similar”?

* Are there useful ways of classifying/categorizing
nodes?

* Are there useful ways of classifying/categorizing
networks?

 What are the important nodes and links?

37

Example

* |n social networks,
it’s nice to be a hub

38

Example

* |n social networks,
it’s nice to be a hub

>

/

N

 But it Depends on o
What You're
Sharing! 75}

39

Example: Small Worlds

* Afriend of a friend is also frequently a friend

* Only six hops separate any two people in the world

o

Stanley Milgram

4

Experimenter, 2015
Thriller/Documentary

Born August 15, 1933
The Bronx, New York City, U.S.

Died December 20, 1984 (aged 51)
Manhattan, New York City, U.S.

Education Queens College, New York (B.A,,
Political Science, 1954)
Harvard Universi ty (Ph.D., Social
Psychology, 1960)

Known for Milgram experiment
Small-world experiment
Familiar stranger 40

Network Questions: Communities

Are there clusters in which the connections are particularly
strong?

How to discover communities, especially in large
networks?

How can we tell if these communities are statistically
significant?

What do these clusters tell us in specific applications?
How we can optimize the number of communities?

41

Network Questions: Dynamics Of

How can we model the growth of networks?

What are the important features of networks that our
models should capture?

Are there “universal” models of network growth?
— What details matter and what details don’t?

How Is the time-evolution of a network?
— How about the reverse-time?! (e.g., sampling)

How the network properties affected by its dynamical
evolution?

42

Network Questions: Dynamics On

 How do diseases, computer viruses, innovations,
rumors, revolutions, and opinions propagate on
networks?

* What properties of networks are relevant to the
answer of the above question?

* If you wanted to prevent (or encourage) spread of
something on a network, what should you do?

2,11
foRed g*

5
§
oy 23

7 R
X
A

~
p

£
¥
3

>e<,>9o fx3>)(,

Network Questions: Dynamics On

 What types of networks are robust to random attack or
failure?

 What types of networks are robust to intentional and
cascading attack?

44

Network Questions: Algorithms

What types of networks are searchable or navigable?
What are good ways to visualize complex networks?

What are the optimal algorithms for computing
network metrics?

How does google page rank work?

If the internet were to double in size, would it still
work?

45

Applications

« Applications that involve not only a set of items, but also the
connections between them

Schedules

'O L-.ll

Hypertext Circuits
46

Graph Samples

Geography:

— Cities and roads

— Airports and flights (diameter = 20 !!)
Publications:

— The co-authorship graph
* E.g.the Erdos distance

— The reference graph
Phone calls: who calls whom
Almost everything can be modeled as a graph !

Graph Terminology

Terminology

- Directed vs Undirected graphs

Directed graphs (digraphs)
(ordered pairs of vertices)

1 (2) 5
() (3) (o

in-degree of v: # edges enetring v
out-degree of v: # edges leaving v

v is adjacent to u if there is an edge (u,v)

Undirected graphs
(unordered pairs of vertices)

degree of v: # edges incident on v

v is adjacent to u and uis adjacent oV
if there is and edge (u,v)

49

Terminology (cont’'d)

Complete graph

— A graph with an edge between each pair of vertices
Subgraph

— Agraph (V, E) such that VeV and EcE

Path from v tow

— A sequence of vertices <v,, V4, ..., V> such that
Vo=V and v,=w

Length of a path
— Number of edges in the path

path from v, tov,
<V, Vo, V>

50

Terminology (cont’'d)

w IS reachable from v

— If there is a path from v to w

Simple path

— All the vertices in the path are distinct

Cycles

— A path <v,, vy, ..., v,> forms a cycle If vy=v, and k=2
Acyclic graph

(J
— A graph without any cycles 0'9
X |I

cycle from v, to v,
<V, Vy, V3,V >

51

Terminology (cont’'d)

Connected and Strongly Connected

directed graphs undirected graphs

connected: every pair of vertices

strongly connected: every two vertices
Is connected by a path

are reachable from each other

connected components: all possible
connected subgraphs

strongly connected components | all possible
strongly connected subgraphs

strongly connected components: {a,b,c.d} { e} {f} connected compeonents: {a,b c} {d} {e f}
52

Connectivity

Undirected graphs are connected if there is a path between

any two vertices

e Directed graphs are strongly connected if there is
a path from any one vertex to any other

¢

19

Connectivity

Directed graphs are weakly connected If there Is a path
between any two vertices, ignoring direction

°

¢ o

e Acomplete graph has an edge between every pair of

2o

20

Connectivity

A (strongly) connected component is a subgraph
which is (strongly) connected

CCinanundirected graph: _—

SCCin a directed graph;

SN,

~ et
~. g

21

Terminology (cont’'d)

* Atree is a connected, acyclic undirected graph

tree disconnected

56

Terminology (cont’'d)

* Abipartite graph is an undirected graph

G =(V, E) inwhichV =V, +V, and there are
edges only between vertices in V, and V,

57

Bipartiteness

Graph G = (V,E) is bipartite iff it can be partitioned into two sets of
nodes A and B such that each edge has one end in A and the
other end in B

Alternatively:
* Graph G =(V,E) is bipartite iff all its cycles have even length

 Graph G = (V,E) is bipartite iff nodes can be coloured using
two colours

Question: given a graph G, how to test if the graph is bipartite?
Note: graphs without cycles (trees) are bipartite

.‘..
N *
*
d .
b .
o .
L '0 .
n) .
[] -
n -
™Y -
. L -
. . . .
bipartite: k : :
] \J -
. []
.]
“ []
o []
*
. s * :
o, *

non bipartite

Distance and Diameter

The distance between two nodes, d(u,v), is the length
of the shortest paths, or o if there is no path

The diameter of a graph is the largest distance
between any two nodes

Graph is strongly connected iff diameter < o

22

Subgraphs

* Asubgraph of a graph G =(V, E) is a graph H=(V’, E’) where V’
is a subset of Vand E’ is a subset of E

 Example applications: solving sub-problems within a graph
Representation example: V ={u, v, w}, E = ({u, v}, {v, w}, {w, u}},
Hl ’ H2

Graph - Isomorphism

e G1=(V1,E2)and G2 =(V2, E2) are isomorphic if:
e There is a one-to-one and onto function f from V1 to V2

with the property that

 aandb are adjacent in G1 if and only if f (a) and f (b) are
adjacent in G2, for allaand b in V1.

* Function fis called isomorphism

Example applications: In chemistry, to find if two compounds have

the same structure

Graph - Isomorphism

Representation example: G1 =(V1, E1), G2 =(V2, E2)
f(uy) = vy, f(uy) = vy, f(us) = vs, f(u,) = v,,

Representation of Graphs

Representation of Graphs

* Two standard ways.

— Adjacency Lists. . T I I
90 b a o C

" C d —T—| a b
o G d d T C

— Adjacency Matrix.

()
¢

B WN R
Y =l
O r O RN
R O R R W
O r O Rrld

o"o

3

Graph Representation

« Adjacency list representation of G = (V, E)
— An array of | V| lists, one for each vertex in V

— Each list Adj[u] contains all the vertices v that are
adjacent to u (i.e., there is an edge from u to v)

— Can be used for both directed and undirected graphs

Undirected graph

1 2 5| /

2 1 5 3 41/
3 2 ol 4

4 2 I 3|/

5 o 4 1 2

65

Adjacency Lists

* Consists ot an array Adj ot | V] lists.

* One list per vertex.

 Foru € V, Adj[u] consists of all vertices adjacent to u.
GVD
GG

@—® & He [1
N T
o A

1 b 1 d 1 C

» C

If weighted, store weights also in adjacency
lists.

{ d

o 6o T 9

Properties of Adjacency-List
Representation

« Sum of “lengths” of all adjacency lists (1)

®
%

— Directed graph: |E| ‘
OS0

 edge (u, v) appears only once (i.e., in the Directed graph

list of u)
O—2
— Undirected graph: o |E| a‘e
—@

Undirected graph

 edge (u, v) appears twice (i.e., in the lists of

both u and v)

67

Properties of Adjacency-List
Representation

 Memory required

- O(V+E) o e
 Preferred when a e
— The graph is sparse: |E| <<|V|?2 G °

Undirected graph

— We need to quickly determine the nodes
adjacent to a given node.

- Disadvantage o e’
— No quick way to determine whether there is '
an edge between node u and v ‘
« Time to determine if (u, v) € E: e °
— O(degree(u)) Directed graph

« Time to list all vertices adjacent to u:

— ©(degree(u)) 68

Graph Representation

 Adjacency matrix representation of G = (V, E)
— Assume vertices are numbered 1, 2, ... | V|
— The representation consists of a matrix A |y | |v|:

O otherwise

—aij:+1 if (i,j) € E

iz

Undirected graph

a A W DN

1 2 3
0 1 0
1 0 1
0 1 0
0 1 1
1 1 0

For undirected
graphs, matrix A
IS symmetric:

a;; = q;

A=AT

69

Properties of Adjacency Matrix
Representation

Memory required

— ©(V?), independent on the number of edges in G o e
Preferred when e
— The graph is dense: | E |is close to | V | 2 E H

— We need to quickly determine if there is
an edge between two vertices

Time to determine if (u, v) € E: Undirected graph
- 0(1)

Disadvantage o e
— No quick way to determine the vertices
adjacent to another vertex e e

Time to list all vertices adjacent to u:
- OV) Directed graph

70

Weighted Graphs

« Graphs for which each edge has an associated weight
w(u, v)
w: E > R, weight function

e Storing the weights of a graph

— Adjacency list:

« Store w(u,v) along with vertex v in

u's adjacency list

— Adjacency matrix:

« Store w(u, v) at location (u, v) in the matrix

71

Weighted Graphs

/’ 0 25 o0 o0 o oo oo \
[%0 () 10 14 o o oo |
S o () @ oo |§ oo \
o 6 |8 () oo o0 oo
w o oo o () oo r/
% o0 oo 32 42 0 14
o 00 @ % e || (
4
(a) A weighted digraph (b) Its adjacency matnx,

ad facencylist

Nade tormat

. I 25 [nil J (u'rlrt hwg/ul Imi1
0 BT EE, T T T

| —_—
e

9 —

3 _—.;Ll | 5 l -}-—O{ 6 I 16 I nlIJ
O
6 - s | 2] <+ s |2 S—of 7 [1] nil~]

7 s 6 | 11] ni]

72

Some graph operations

adjacency matrix adjacency lists
insertEdge 0(1) O(e)
isEdge 0(1) O(e)
#successors? o(V) O(e)
#predecessors? o(V) O(E)

Traversing a graph

Traversing a graph

\‘

/

. *

* Where to start!
e Will all vertices be visited?
* How to prevent multiple visits!?

Graph-searching Algorithms

* Searching a graph

— Systematically follow the edges of a graph to
visit the vertices of the graph.

* Used to discover the structure of a graph.
* Standard graph-searching algorithms.

— Breadth-first Search (BFS).
— Depth-first Search (DFS).

Breadth-first Search (BFS)

* Input: Graph G = (V, E), either directed or undirected,
and source vertex s € V.

* Output:

— d[v] = distance (smallest # of edges, or shortest path) from s to
v, forall v € V. d[v] = «o if vis not reachable from s.

— 7z{v] = u such that (u, v) is last edge on shortest path s ~~V.
* uisV'spredecessor.

— Builds breadth-first tree with root s that contains all reachable
vertices.

Breadth-first Search (BFS)

* Expands the frontier between discovered and
undiscovered vertices uniformly across the
breadth of the frontier.

— A vertex is “discovered” the first time it is encountered
during the search.

— A vertex is “finished” if all vertices adjacent to it have
been discovered.

* Colors the vertices to keep track of progress.

— White — Undiscovered.
— Gray — Discovered but not finished.
— Black — Finished.

BFS(G,s)
1. foreach vertex uin V[G] — {s}
2 do color[u] <— white o —
initialization
3 d[u] < oc
: white: undiscovered
4 n[u] < nil .
gray: discovered black:
5 color[s] < gray finished
6 dls]«0 access source s
7 m[s] < nil
8 Q] Q: a queue of discovered
9 enqueue(Q,s) Velrtic[e? o of
. colorjv]. color orv
10 whileQ# ® d[v]: distance from sto v
11 do u <— dequeue(Q) nt[u]: predecessor of v
12 for each vin Adj[u]
13 do if color[v] = white
14 then color[v] < gray
15 dlv] <« d[u] +1
16 n[v] < u
17 enqueue(Q,v)
18 color[u] <« black

Example (BFS)

®
®

O,

O—O

Q: s

0

©

y

Example (BFS)

Example (BFS)

Example (BFS)

Example (BFS)

N X
N <
w C

Example (BFS)

N <
w C
w <

Example (BFS)

w c
w <<

Example (BFS)

Example (BFS)

Example (BFS)

BF Tree

Depth-first Search
* Explore edges out of t@o@)ecently discovered

vertex v.

When all edges of v have been explored, backtrack to
explore other edges leaving the vertex from which v
was discovered.

e “Search as deep as possible first.”

* Continue until all vertices reachable from the original
source are discovered.

* If any undiscovered vertices remain, then one of them
is chosen as a new source and search is repeated from
that source.

Depth-first Search

* Input: G= (V, E), directed or undirected. No source
vertex given!

* Output:
— 2 timestamps on each vertex. Integers between 1 and 2|V|.

* d[v] = discovery time (v turns from white to gray)
* f[v] = finishing time (v turns from gray to black)
— 7t[v] : predecessor of v = u, such that v.was discovered during
the scan of u’s adjacency list.
* Coloring scheme for vertices as BFS. A vertex is
— “discovered” the first time it is encountered during the search.

— Avertex is “finished” if it is a leaf node or all vertices adjacent
to it have been finished.

Pseudo-

DFS(G)

1. for each vertex u € V[G]
2. docolor[u] < white
3. n[u] < NIL

4. time <0

5. for each vertex u € V[G]
6. do if color[u] = white

7. then DFS-Visit(u)

1.

Uses a global timestamp time.

® N @V AWN

™ (DEs-Visit(u)

color[u] <— GRAY // White vertex u
has been discovered

time < time + 1
d[u] « time
for each v € Adj[u]

do if color[v] = WHITE

then nt[v] < u
DFS-Visit(v)
color[u] <~ BLACK //Blacken u;
it is finished.

flu] « time < time + 1

1/

S)
ample (DF
EX

1/

S)
ample (DF
EX

Example (DFS)

1/

ample (DFS)
EX

3/

()
X

Example (DFS)

Example (DFS)

Example (DFS)

u \" W
X z

y

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)!!

Recursive DFS Algorithm

Traverse()
for all nodes X
visited[X]= False
DFS(1st node)
DFS(X))
visited[X] = True
for each successor Y of X
if (visited[Y] = False)
DFS(Y)

ﬁ Quiz 1 ﬁ

 The Breadth First Search algorithm has been
implemented using the queue data structure.
One possible order of visiting the nodes of the
following graph is

A MNOPQR
B NQMPOR
C QMNPRO
D QMNPOR

62

Quiz 2

Give the visited node order for each type of graph search, starting with s, given the following ad-
jacency lists and accompanying figure:

adi(a) = [].

adj(c) = [e, b]

adj(b) = [d],

adj(d) = [c],

adj(e) = [s]. c ° °
. BFS?

* DFS?

63

Quiz 3

e Consider the following graph
Among the following sequences
labeghf
llabfehg
ll)abfhge
IV)afghbe Which are depth first

traversals of the above graph

A l, I and IV only

B | and IV only

C I, Il and IV only
D l, Il and IV only

64

Quiz 4

* Suppose depth first search is executed on the graph below starting at
some unknown vertex. Assume that a recursive call to visit a vertex is
made only after first checking that the vertex has not been visited earlier.
Then the maximum possible recursion depth (including the initial call) is ?

O—0O—0O O—O—CO
O—O——CO i O—O—O——0O
(U L)
A 17
B 18
c 19
D 20

65

Quiz 5

* Discuss the Order of BFS and DFS algorithms,
with respect to V and E.

66

Exercises

Problem 1

« Given an adjacency-list representation, how long
does it take to compute the out-degree of every
vertex?

 How long does it take to compute the in-degree
of every vertex?

116

Problem 1

« Given an adjacency-list representation, how long
does it take to compute the out-degree of every
vertex?

— For each vertex u, search Adj[u] = O(E)

a A W N P
N
= | 2N | N B KN | K

117

Problem 1

 How long does it take to compute the in-degree
of every vertex?
— For each vertex u,
search entire list of edges - O(VE)

1 " 2 » 5| /

2 o 1 » 5 » 3 4|/
3 | 2 »| 4

4 o 2 o 5 o 3|/

S M 4 N » 2

118

Problem 2

« The transpose of a graph G=(V,E) is the graph
G™=(V,E"), where E"™={(v,u)eV x V: (u,v) € E}. Thus, GT
IS G with all edges reversed.

(a) Describe an efficient algorithm for computing GT from
G, both for the adjacency-list and adjacency-matrix
representations of G.

(b) Analyze the running time of each algorithm.

119

Adjacency matrix

for (I=1; I<=V; 1++)
for(j=1+1; |[<=V, |++)

i)

AlD.

Al

if(A[l

}

Problem 2 (cont’d)

&& TA]0) 1
=0; 1
=1;

2
3
4
)

O(V?) complexity

1 2 3 4 5
0 1 0 0 1
0 0 0 1 1
0 1 0 0 0
0 1 1 0 1
0 0 1 0

120

Problem 2 (cont’d)

Adjacency list

Allocate V list pointers for G (Adj[]) <= O(V)

for(i=1; i<=V, i++)
for every vertex v in Adj[i]
add vertex 1 to Adj’[v]

Total time: O(V+E)

aa A~ W N P

™

>~ 4= O(E)

N
\ 4 \ 4 \ 4 A v
= o1 NAN o1 o1

121

Problem 3

« When adjacency-matrix representation is used, most
graph algorithms require time Q(V?), but there are some
exceptions.

« Show that determining whether a directed graph G
contains a universal sink (a vertex of in-degree |V|-1
and out-degree 0) can be determined in time O(V).

/
Example

122

Problem 3 (cont.)

« Example

99
©

123

Problem 3 (cont.)

How many sinks could a graph have?

How can we determine whether a given vertex u
IS a universal sink?

How long would it take to determine whether a
given vertex u Is a universal sink?

124

Problem 3 (cont.)

How many sinks could a graph have?

—0Oorl

How can we determine whether a given vertex u
IS a universal sink?

— The u-row must contain 0’s only

— The u-column must contain 1’s only

— Alu][u]=0

How long would it take to determine whether a
given vertex u Is a universal sink?

— O(V) time

125

Problem 3 (cont.)

[S-SINK (A, k)
let 4 be |V = |V|

for j «— 1to|V| = Check for a 1 in row &
do ifﬂg—_l: =1
then return FALSE
fori < 1to|V| = Check for an off-diagonal 0 in column &

doifagr=0andrf #k
then return FALSE
return TRUE

126

Problem 3 (cont.)

 How long would it take to determine whether a
given graph contains a universal sink if you were
to check every single vertex in the graph?

o - O(V?)

« Can you come up with a O(V) algorithm?

127

Problem 3 (cont.)

* Observations
— If AJu][v]=1, then u cannot be a universal sink
— If AJu][v]=0, then v cannot be a universal sink

UNIVERSAL-SINE (A)
let 4 be |V| = |V

1) «— 1
while i < |V]and j < |V|
do ifﬂ';“f =1
then: — 1 4+ 1
else j «— j+1
5«10
ifi = |V
then return “there 1s no unmiversal sink”
elseif [5-SINK(A,) = FALSE
then return “there 1s no universal sink”
else return ¢ “'is a universal sink” 128

Problem 3 (cont.)

» Loop terminates when i > |V]| or | > |V|
« Upon termination, the only vertex that could be a sink is i
- If i > |V|, there is no sink
- If i < |V|, then j>|V]|
* vertices k where 1 < k <i can not be sinks

* vertices k where i < k < |V| can not be sinks 129

