
Analysis and Design of
Algorithms

Dynamic Programming

Instructor: Morteza Zakeri

Slide by: Alexander S. Kulikov

Modified by: Morteza Zakeri

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

Dynamic Programming

Extremely powerful algorithmic technique with
applications in optimization, scheduling,
planning, economics, bioinformatics, etc.

Dynamic Programming

Extremely powerful algorithmic technique with
applications in optimization, scheduling,
planning, economics, bioinformatics, etc.

At contests, probably the most popular type of
problems.

Dynamic Programming

Extremely powerful algorithmic technique with
applications in optimization, scheduling,
planning, economics, bioinformatics, etc

At contests, probably the most popular type of
problems

A solution is usually not so easy to find, but
when found, is easily implementable

Dynamic Programming

Extremely powerful algorithmic technique with
applications in optimization, scheduling,
planning, economics, bioinformatics, etc

At contests, probably the most popular type of
problems

A solution is usually not so easy to find, but
when found, is easily implementable

Need a lot of practice!

Fibonacci numbers

Fibonacci numbers

⎧
⎨⎪ 0 ,

Fn = 1,
⎪⎩ Fn−1 +

Fn−2,

n = 0 ,

n = 1 ,

n > 1 .

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Computing Fibonacci Numbers

Computing Fn

Input: An integer n ≥ 0.

Output: The n-th Fibonacci number Fn.

Computing Fibonacci Numbers

Computing Fn

Input: An integer n ≥ 0.

Output: The n-th Fibonacci number Fn.

1
2
3
4

def f i b (n) :
i f n < = 1 :

r etur n n
return f i b (n − 1) + f i b (n − 2)

Recursion Tree

Fn

Fn−1

Fn−2 Fn−3 Fn−3 Fn−4

F FFn−3 Fn−4 Fn−4 n−5 n−4 Fn−5 Fn−5 Fn−6

Fn−2

..

Recursion Tree

Fn

Fn−1

Fn−2 Fn−3 Fn−3 Fn−4

F FFn−3 Fn−4 Fn−4 n−5 n−4 Fn−5 Fn−5 Fn−6

Fn−2

..

Running Time

Essentially, the algorithm computes Fn as the
sum of Fn 1’s

Running Time

Essentially, the algorithm computes Fn as the
sum of Fn 1’s

Hence its running time is O(Fn)

Running Time

Essentially, the algorithm computes Fn as the
sum of Fn 1’s

Hence its running time is O(Fn)

But Fibonacci numbers grow exponentially fast:
Fn ≈ 𝜑n, where 𝜑 = 1.618 . . . is the golden ratio

Running Time

Essentially, the algorithm computes Fn as the
sum of Fn 1’s

Hence its running time is O(Fn)

But Fibonacci numbers grow exponentially fast:

Fn ≈ 𝜑n, where 𝜑 = 1.618 . . . is the golden ratio

E.g., F150 is already 31 decimal digits long

Running Time

Essentially, the algorithm computes Fn as the
sum of Fn 1’s

Hence its running time is O(Fn)

But Fibonacci numbers grow exponentially fast:

Fn ≈ 𝜑n, where 𝜑 = 1.618 . . . is the golden ratio

E.g., F150 is already 31 decimal digits long

The Sun may die before your computer returns

F150

Reason

Many computations are
repeated

Reason

Many computations are repeated

“Those who cannot remember the past are
condemned to repeat it.” (George Santayana)

Reason

Many computations are repeated

“Those who cannot remember the past are

condemned to repeat it.” (George Santayana)

A simple, but crucial idea: instead of
recomputing the intermediate results, let’s store
them once they are computed

Memoization

1
2
3
4

def f i b (n) :
i f n < = 1 :

r etur n n
return f i b (n − 1) + f i b (n − 2)

Memoization

def f i b (n) :
i f n < = 1 :

r etur n n
return f i b (n − 1) + f i b (n − 2)

T = dict()

i f n < = 1 :
T[n] = n

e l se :
T[n] = f i b (n − 1) + f i b (n − 2)

1
2
3
4

1
2
3 def f i b (n) :
4 if n not in T:
5
6
7
8
9

10 return T[n]

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?

After all, this is how you would compute F5 by
hand:

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?

After all, this is how you would compute F5 by
hand:

1 F0 = 0, F1 = 1

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?

After all, this is how you would compute F5 by
hand:

1 F0 = 0, F1 = 1
2 F2 = 0 + 1 = 1

Hm...

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?

After all, this is how you would compute F5 by
hand:

1 F0 = 0, F1 = 1
2 F2 = 0 + 1 = 1
3 F3 = 1 + 1 = 2

Hm...

1

2

3

4

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?

After all, this is how you would compute F5 by
hand:

F0 = 0, F1 = 1
F2 = 0 + 1 = 1
F3 = 1 + 1 = 2
F4 = 1 + 2 = 3

Hm...

1

2

3

4

5

But do we really need all this fancy stuff
(recursion, memoization, dictionaries) to solve
this simple problem?

After all, this is how you would compute F5 by
hand:

F0 = 0, F1 = 1
F2 = 0 + 1 = 1
F3 = 1 + 1 = 2
F4 = 1 + 2 = 3
F5 = 2 + 3 = 5

Iterative Algorithm

1
2

def f i b (n) :
T = [None] * (n + 1)

3 T [0] , T [1] = 0 , 1
4
5 for i in range (2 , n + 1) :
6 T [i] = T [i − 1] + T [i − 2]
7
8 r etur n T [n]

Hm Again...

But do we really need to waste so much space?

Hm Again...

But do we really need to waste so much space?

new_current = p r e v i o u s + c u r r e n t
p r e v i o u s , c u r r e n t = c u r r e n t , new_current

1 def f i b (n) :
2 i f n <= 1 :
3 r etur n n
4
5 p r e v i o u s , c u r r e n t = 0 , 1

6 for _ in range (n − 1) : 7
8
9

10 r etur n c u r r e n t

Running Time

O(n) additions

Running Time

O(n) additions

On the other hand, recall that Fibonacci
numbers grow exponentially fast: the binary
length of Fn is O(n)

Running Time

O(n) additions

On the other hand, recall that Fibonacci
numbers grow exponentially fast: the binary
length of Fn is O(n)

In theory: we should not treat such additions as
basic operations

Running Time

O(n) additions

On the other hand, recall that Fibonacci
numbers grow exponentially fast: the binary
length of Fn is O(n)

In theory: we should not treat such additions as
basic operations

In practice: just F100 does not fit into a 64-bit
integer type anymore, hence we need bignum
arithmetic

Summary

The key idea of dynamic programming: avoid
recomputing the same thing again!

Summary

The key idea of dynamic programming: avoid
recomputing the same thing again!

At the same time, the case of Fibonacci
numbers is a slightly artificial example of
dynamic programming since it is clear from the
very beginning what intermediate results we
need to compute the final result

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

Longest Increasing Subsequence

Longest increasing
subsequence

Input:

Output:

An array A = [a0, a1, . . . , an−1].

A longest increasing subsequence (LIS),
i.e., ai1 , ai2 , . . . , aik such that
i1 < i2 < . . . < ik , ai1 < ai2 < · · · < aik ,
and k is maximal.

Example

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

Example

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

Analyzing an Optimal Solution

Consider the last element x of an optimal
increasing subsequence and its previous
element z :

z x

Analyzing an Optimal Solution

Consider the last element x of an optimal
increasing subsequence and its previous
element z :

z x

First of all, z < x

Analyzing an Optimal Solution

Consider the last element x of an optimal
increasing subsequence and its previous element z :

z x

First of all, z < x

Moreover, the prefix of the IS ending at z must be
an optimal IS ending at z as otherwise the initial
IS would not be optimal:

z x

Analyzing an Optimal Solution

Consider the last element x of an optimal
increasing subsequence and its previous
element z :

z x

First of all, z < x

Moreover, the prefix of the IS ending at z must
be an optimal IS ending at z as otherwise the
initial IS would not be optimal:

z x

Analyzing an Optimal Solution

Consider the last element x of an optimal
increasing subsequence and its previous
element z :

z x

First of all, z < x

Moreover, the prefix of the IS ending at z must be
an optimal IS ending at z as otherwise the
initial IS would not be optimal:

z x

Optimal substructure by “cut-and-paste” trick

Subproblems and Recurrence Relation

Let LIS (i) be the optimal length of a LIS ending
at A[i]

Subproblems and Recurrence Relation

Let LIS (i) be the optimal length of a LIS ending
at A[i]

Then

LIS (i) = 1+max{LIS (j) : j < i and A[j] < A[i]}

Subproblems and Recurrence Relation

Let LIS (i) be the optimal length of a LIS ending
at A[i]

Then

LIS (i) = 1+max{LIS (j) : j < i and A[j] < A[i]}

Convention: maximum of an empty set is equal
to zero

Subproblems and Recurrence Relation

Let LIS (i) be the optimal length of a LIS ending
at A[i]

Then

LIS (i) = 1+max{LIS (j) : j < i and A[j] < A[i]}

Convention: maximum of an empty set is equal
to zero

Base case: LIS (0) = 1

Algorithm

When we have a recurrence relation at hand,
converting it to a recursive algorithm with
memoization is just a technicality

We will use a table T to store the results:
T [i] = LIS (i)

Algorithm

When we have a recurrence relation at hand,
converting it to a recursive algorithm with
memoization is just a technicality

We will use a table T to store the results:
T [i] = LIS (i)

Initially, T is empty. When LIS (i) is computed,
we store its value at T [i] (so that we will never
recompute LIS (i) again)

Algorithm

When we have a recurrence relation at hand,
converting it to a recursive algorithm with
memoization is just a technicality

We will use a table T to store the results:
T [i] = LIS (i)

Initially, T is empty. When LIS (i) is computed,
we store its value at T [i] (so that we will never
recompute LIS (i) again)

The exact data structure behind T is not that
important at this point: it could be an array or
a hash table

Memoization

1 T = d i c t ()
2
3 def l i s (A, i) :
4 i f i not in T :
5 T [i] = 1
6
7 for j in range (i) :
8 i f A[j] < A[i] :
9 T [i] = max(T[i] , l i s (A, j) + 1)

10
11 r etur n T [i]
12
13 A = [7 , 2 , 1 , 3 , 8 , 4 , 9 , 1 , 2 , 6 , 5 , 9 , 3]
14 p r i n t (max(l i s (A, i) for i in range (len (A))))

Running Time

The running time is quadratic (O(n2)): there are n

“serious” recursive calls (that are not just table look-
ups), each of them needs time O(n) (not counting
the inner recursive calls)

Table and Recursion

We need to store in the table T the value of
LIS (i) for all i from 0 to n − 1

Table and Recursion

We need to store in the table T the value of
LIS (i) for all i from 0 to n − 1

Reasonable choice of a data structure for T :
an array of size n

Table and Recursion

We need to store in the table T the value of
LIS (i) for all i from 0 to n − 1

Reasonable choice of a data structure for T :
an array of size n

Moreover, one can fill in this array iteratively
instead of recursively

Iterative Algorithm

1

1
2

def l i s (A) :
T = [None] * len (A)

3
4 for i in range (len (A)) :
5 T [i] = 1
6 for j in range (i) :
7 i f A[j] < A[i] and T [i] < T [j] + 1 :
8 T [i] = T [j] + 1
9
0 r etur n max (T[i] for i in range (len (A)))

Iterative Algorithm
1
2

def l i s (A) :
T = [None] * len (A)

3
4 for i in range (len (A)) :
5 T [i] = 1
6 for j in range (i) :
7 i f A[j] < A[i] and T [i] < T [j] + 1 :
8 T [i] = T [j] + 1
9
0 r etur n max (T[i] for i in range (len (A)))1

Crucial property: when computing T [i], T [j] for
all j < i have already been computed

Iterative Algorithm
1
2

def l i s (A) :
T = [None] * len (A)

3
4 for i in range (len (A)) :
5 T [i] = 1
6 for j in range (i) :
7 i f A[j] < A[i] and T [i] < T [j] + 1 :
8 T [i] = T [j] + 1
9
0 r etur n max (T[i] for i in range (len (A)))1

Crucial property: when computing T [i], T [j] for
all j < i have already been computed

Running time: O(n2)

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

Reconstructing a Solution

How to reconstruct an optimal IS?

Reconstructing a Solution

How to reconstruct an optimal IS?

In order to reconstruct it, for each subproblem
we will keep its optimal value and a choice
leading to this value

Adjusting the Algorithm

prev = [None] * len(A)

prev[i] = -1
for j in range (i) :

i f A[j] < A[i] and T [i] < T [j] + 1 :
T [i] = T [j] + 1

1 def l i s (A) :

2 T = [None] * len (A)
3
4
5 for i in range (len (A)) :
6 T [i] = 1
7
8
9

10
11 prev[i] = j

Unwinding Solution

1
2
3
4
5
6
7
8
9

10
11
12

l a s t = 0
for i in range (1 , len (A)) :

i f T [i] > T [l a s t] :
l a s t = i

l i s = []
c u r r e n t = l a s t
while c u r r e n t > = 0 :

l i s . append (c u r r e n t)
c u r r e n t = p r e v [c u r r e n t]

l i s . r e v e r s e ()
r etur n [A[i] for i in l i s]

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev -1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev 9-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev 9-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev 5-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev 5-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev 3-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev 3-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev 1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev 1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1

Unwinding Solution

1
2
3
4
5
6
7
8
9

10
11
12

l a s t = 0
for i in range (1 , len (A)) :

i f T [i] > T [l a s t] :
l a s t = i

l i s = []
c u r r e n t = l a s t
while c u r r e n t > = 0 :

l i s . append (c u r r e n t)
c u r r e n t = p r e v [c u r r e n t]

l i s . r e v e r s e ()
r etur n [A[i] for i in l i s]

Reconstructing Again

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Reconstructing without prev

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

Reconstructing Again

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Reconstructing without prev

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

Reconstructing Again

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Reconstructing without prev

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

Reconstructing Again

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Reconstructing without prev

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

Reconstructing Again

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Reconstructing without prev

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

Summary
Optimal substructure property: any prefix of an
optimal increasing subsequence must be a
longest increasing subsequence ending at this
particular element

Summary
Optimal substructure property: any prefix of an
optimal increasing subsequence must be a
longest increasing subsequence ending at this
particular element
Subproblem: the length of an optimal increasing
subsequence ending at i -th element

Summary
Optimal substructure property: any prefix of an
optimal increasing subsequence must be a
longest increasing subsequence ending at this
particular element
Subproblem: the length of an optimal increasing
subsequence ending at i -th element
A recurrence relation for subproblems can be
immediately converted into a recursive algorithm
with memoization

Summary
Optimal substructure property: any prefix of an
optimal increasing subsequence must be a
longest increasing subsequence ending at this
particular element
Subproblem: the length of an optimal increasing
subsequence ending at i -th element
A recurrence relation for subproblems can be
immediately converted into a recursive algorithm
with memoization
A recursive algorithm, in turn, can be converted
into an iterative one

Summary
• Optimal substructure property: any prefix of an optimal

increasing subsequence must be a longest increasing
subsequence ending at this particular element

• Subproblem: the length of an optimal increasing
subsequence ending at i -th element

• A recurrence relation for subproblems can be
immediately converted into a recursive algorithm with
memoization

• A recursive algorithm, in turn, can be converted into an
iterative one

• An optimal solution can be recovered either by using an
additional bookkeeping info or by using the computed
solutions to all subproblems

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

The Most Creative Part

In most DP algorithms, the most creative part is
coming up with the right notion of a subproblem
and a recurrence relation

The Most Creative Part

In most DP algorithms, the most creative part is
coming up with the right notion of a subproblem
and a recurrence relation

When a recurrence relation is written down, it
can be wrapped with memoization to get
a recursive algorithm

The Most Creative Part

In most DP algorithms, the most creative part is
coming up with the right notion of a subproblem
and a recurrence relation

When a recurrence relation is written down, it
can be wrapped with memoization to get
a recursive algorithm

In the previous section, we arrived at a
reasonable subproblem by analyzing the
structure of an optimal solution

The Most Creative Part

In most DP algorithms, the most creative part is
coming up with the right notion of a subproblem
and a recurrence relation

When a recurrence relation is written down, it
can be wrapped with memoization to get
a recursive algorithm

In the previous section, we arrived at a
reasonable subproblem by analyzing the
structure of an optimal solution

In this section, we’ll provide an alternative way
of arriving at subproblems: implement a naive
brute force solution, then optimize it

Brute Force: Plan

Need the longest increasing subsequence? No
problem! Just iterate over all subsequences and
select the longest one:

Brute Force: Plan

Need the longest increasing subsequence? No
problem! Just iterate over all subsequences and
select the longest one:

Start with an empty sequence

Brute Force: Plan

Need the longest increasing subsequence? No
problem! Just iterate over all subsequences and
select the longest one:

Start with an empty sequence
Extend it element by element recursively

Brute Force: Plan

Need the longest increasing subsequence? No
problem! Just iterate over all subsequences and
select the longest one:

Start with an empty sequence
Extend it element by element recursively
Keep track of the length of the sequence

Brute Force: Plan

Need the longest increasing subsequence? No
problem! Just iterate over all subsequences and
select the longest one:

Start with an empty sequence
Extend it element by element recursively
Keep track of the length of the sequence

This is going to be slow, but not to worry: we
will optimize it later

Brute Force: Code

len (A)) :

seq + [i]))

1 def l i s (A, seq) :
2 r e s u l t = len (seq)
3
4 i f len (seq) = = 0 :
5 l a s t _ i n d e x = −1
6 l a s t _ e l e m e n t = f l o a t ("− i n f ")
7 e l se :
8 l a s t _ i n d e x = seq [−1]

9 l a s t _ e l e m e n t = A[l a s t _ i n d e x]
10
11 for i in range (l a s t _ i n d e x + 1 ,
12 i f A[i] > l a s t _ e l e m e n t :
13 r e s u l t = max(r e s u l t , l i s (A,
14
15 return r e s u l t
16
17 p r i n t (l i s (A = [7 , 2 , 1 , 3 , 8 , 4 , 9] , seq = []))

Optimizing

At each step, we are trying to extend the
current sequence

Optimizing

At each step, we are trying to extend the
current sequence

For this, we pass the current sequence to each
recursive call

Optimizing

At each step, we are trying to extend the
current sequence

For this, we pass the current sequence to each
recursive call

At the same time, code inspection reveals that
we are not using all of the sequence: we are only
interested in its last element and its length

Optimizing

At each step, we are trying to extend the
current sequence

For this, we pass the current sequence to each
recursive call

At the same time, code inspection reveals that
we are not using all of the sequence: we are only
interested in its last element and its length

Let’s optimize!

Optimized Code

r e s u l t = seq_len

1 def l i s (A, seq_len , l a s t _ i n d e x) :
2 i f l a s t _ i n d e x = = −1:
3 l a s t _ e l e m e n t = f l o a t ("− i n f ")
4 e l se :
5 l a s t _ e l e m e n t = A[l a s t _ i n d e x]
6
7
8
9 for i in range (l a s t _ i n d e x + 1 , len (A)) :

10 i f A[i] > l a s t _ e l e m e n t :
11 r e s u l t = max(r e s u l t ,
12 l i s (A, seq_len + 1 , i))
13
14 return r e s u l t
15
16 p r i n t (l i s ([3 , 2 , 7 , 8 , 9 , 5 , 8] , 0 , −1))

Optimizing Further

Inspecting the code further, we realize that
seq_len is not used for extending the current
sequence (we don’t need to know even the
length of the initial part of the sequence to
optimally extend it)

Optimizing Further

Inspecting the code further, we realize that
seq_len is not used for extending the current
sequence (we don’t need to know even the
length of the initial part of the sequence to
optimally extend it)

More formally, for any x ,
extend(A, seq_len, i) is equal to
extend(A, seq_len - x, i) + x

Optimizing Further

Inspecting the code further, we realize that
seq_len is not used for extending the current
sequence (we don’t need to know even the
length of the initial part of the sequence to
optimally extend it)

More formally, for any x ,
extend(A, seq_len, i) is equal to
extend(A, seq_len - x, i) + x

Hence, can optimize the code as follows:
max(result, 1 + seq_len + extend(A, 0, i))

Optimizing Further

Inspecting the code further, we realize that
seq_len is not used for extending the current
sequence (we don’t need to know even the
length of the initial part of the sequence to
optimally extend it)

More formally, for any x ,
extend(A, seq_len, i) is equal to
extend(A, seq_len - x, i) + x

Hence, can optimize the code as follows:

max(result, 1 + seq_len + extend(A, 0, i))

Excludes seq_len from the list of parameters!

Resulting Code

1 +
i f A[i] > l a s t _ e l e m e n t :

r e s u l t = max(r e s u l t , l i s (A, i))

1 def l i s (A, l a s t _ i n d e x) :
2 i f l a s t _ i n d e x = = −1:
3 l a s t _ e l e m e n t = f l o a t ("− i n f ")
4 e l se :

5 l a s t _ e l e m e n t = A[l a s t _ i n d e x]
6
7 r e s u l t = 0
8

9 for i in range (l a s t _ i n d e x + 1 , len (A)) :
10
11
12
13 return r e s u l t
14
15 p r i n t (l i s ([8 , 2 , 3 , 4 , 5 , 6 , 7] , −1))

Resulting Code

i f A[i] > l a s t _ e l e m e n t :
r e s u l t = max(r e s u l t , 1 + l i s (A, i))

1 def l i s (A, l a s t _ i n d e x) :
2 i f l a s t _ i n d e x = = −1:
3 l a s t _ e l e m e n t = f l o a t ("− i n f ")
4 e l se :

5 l a s t _ e l e m e n t = A[l a s t _ i n d e x]
6
7 r e s u l t = 0
8

9 for i in range (l a s t _ i n d e x + 1 , len (A)) :
10
11
12
13 return r e s u l t
14
15 p r i n t (l i s ([8 , 2 , 3 , 4 , 5 , 6 , 7] , −1))

It remains to add memoization!

Summary

Subproblems (and recurrence relation on them)
is the most important ingredient of a dynamic
programming algorithm

Summary

Subproblems (and recurrence relation on them)
is the most important ingredient of a dynamic
programming algorithm

Two common ways of arriving at the right
subproblem:

Summary

Subproblems (and recurrence relation on them)
is the most important ingredient of a dynamic
programming algorithm

Two common ways of arriving at the right
subproblem:

Analyze the structure of an optimal solution

Summary

Subproblems (and recurrence relation on them)
is the most important ingredient of a dynamic
programming algorithm

Two common ways of arriving at the right
subproblem:

Analyze the structure of an optimal solution
Implement a brute force solution and optimize it

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

Statement

Edit distance

Input:

Output:

Two strings A[0 . . . n − 1] and
B [0 . . . m − 1].

The minimal number of insertions,
deletions, and substitutions needed to
transform A to B . This number is known
as edit distance or Levenshtein distance.

Example: EDITING → DISTANCE

EDITING

Example: EDITING → DISTANCE

EDITING

remove E

DITING

Example: EDITING → DISTANCE

EDITING

remove E

DITING

insert S

DISTING

Example: EDITING → DISTANCE

EDITING

remove E

DITING

insert S

DISTING

replace I with by A

DISTANG

Example: EDITING → DISTANCE

EDITING

remove E

DITING

insert S

DISTING

replace I with by A

DISTANG

replace G with C

DISTANC

Example: EDITING → DISTANCE

EDITING

remove E

DITING

insert S

DISTING

replace I with by A

DISTANG

replace G with C

DISTANC

insert E

DISTANCE

Example: alignment

E D I — T I N G —

— D I S T A N C E

cost: 5

E D I — T I N G —

— D I S T A N C E

deletion insertions

cost: 5

Example: alignment

substitutions/mismatches
matches

Analyzing an Optimal Alignment

A[0 . . . n − 1]

B [0 . . . m − 1]

Analyzing an Optimal Alignment

A[0 . . . n − 1]

B [0 . . . m − 1]

A[0 . . . n − 1] —

B [0 . . . m − 2] B [m − 1]

insertion

Analyzing an Optimal Alignment

A[0 . . . n − 1]

B [0 . . . m − 1]

A[0 . . . n − 1] —

B [0 . . . m − 2] B [m − 1]

insertion

A[0 . . . n − 2] A[n − 1]

B [0 . . . m − 1] —

deletion

Analyzing an Optimal Alignment

A[0 . . . n − 1]

B [0 . . . m − 1]

A[0 . . . n − 1] —

B [0 . . . m − 2] B [m − 1]

insertion

A[0 . . . n − 2] A[n − 1]

B [0 . . . m − 1] —

deletion

A[0 . . . n − 2] A[n − 1]

B [0 . . . m − 2] B [m − 1]match/mismatch

Subproblems

Let ED(i , j) be the edit distance of
A[0 . . . i − 1] and B [0 . . . j − 1].

Subproblems

Let ED(i , j) be the edit distance of
A[0 . . . i − 1] and B [0 . . . j − 1].

We know for sure that the last column of an
optimal alignment is either an insertion, a
deletion, or a match/mismatch.

Subproblems

Let ED(i , j) be the edit distance of
A[0 . . . i − 1] and B [0 . . . j − 1].

We know for sure that the last column of an
optimal alignment is either an insertion, a
deletion, or a match/mismatch.

What is left is an optimal alignment of the
corresponding two prefixes (by cut-and-paste).

Recurrence Relation

⎧
⎨⎪ED(i , j − 1) + 1

ED(i , j) = min ED(i − 1, j) + 1
⎪⎩ED (i − 1, j − 1) + diff(A[i], B[j])

Recurrence Relation

⎧
⎨⎪ED(i , j − 1) + 1

ED(i , j) = min ED(i − 1, j) + 1
⎪⎩ED (i − 1, j − 1) + diff(A[i], B[j])

Base case: ED(i , 0) = i , ED(0, j) = j

Recursive Algorithm
1
2
3

T = d i c t ()

def e d i t _ d i s t a n c e (a , b , i , j) :
4 i f not (i , j) i n T :
5 i f i = = 0 : T [i , j] = j
6 e l i f j = = 0 : T [i , j] = i
7 e l s e :
8 d i f f = 0 i f a [i − 1] = = b [j − 1] e l s e 1
9 T [i , j] = min (

10 e d i t _ d i s t a n c e (a , b , i − 1 , j) + 1 ,
11 e d i t _ d i s t a n c e (a , b , i , j − 1) + 1 ,
12 e d i t _ d i s t a n c e (a , b , i − 1 , j − 1) + d i f f)
13
14 return T [i , j]
15
16
17
18

p r i n t (e d i t _ d i s t a n c e (a=" e d i t i n g " , b=" d i s t a n c e " ,
i = 7 , j = 8))

Converting to a Recursive Algorithm

Use a 2D table to store the intermediate results

Converting to a Recursive Algorithm

Use a 2D table to store the intermediate results

ED(i , j) depends on ED(i − 1, j − 1),
ED(i − 1, j), and ED(i , j − 1):

0

i

n

0 mj

insertion

deletio
n

Filling the Table

Fill in the table row by row or column by column:

0

i

n

0

i

n

0 m 0j j m

Iterative Algorithm

e l s e 1

f o r i i n range (1 , len (a) + 1) :
f o r j i n range (1 , len (b) + 1) :

d i f f = 0 i f a [i − 1] = = b [j − 1]
T [i] [j] = min (T [i − 1] [j] + 1 ,

T [i] [j − 1] + 1 ,
T [i − 1] [j − 1] + d i f f)

return T [len (a)] [len (b)]

1 def e d i t _ d i s t a n c e (a , b) :
2 T = [[f l o a t (" i n f ")] * (len (b) + 1)
3 f o r _ i n range (len (a) + 1)]
4 f o r i i n range (len (a) + 1) :
5 T [i] [0] = i
6 f o r j i n range (len (b) + 1) :
7 T [0] [j] = j
8
9

10
11
12
13
14
15
16
17
18
19 p r i n t (e d i t _ d i s t a n c e (a=" d i s t a n c e " , b=" e d i t i n g "))

Example

E D I T I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S 3
T 4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1
2
3
4
5
6
7
8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S 3
T 4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1
2
3
4
5
6
7
8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S 3
T 4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1 1
2
3
4
5
6
7
8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S 3
T 4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1 1
2
3
4
5
6
7
8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S 3
T 4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1 1 1
2
3
4
5
6
7
8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S 3
T 4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1 1 1
2
3
4
5
6
7
8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S 3
T 4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1 1 1 2
2
3
4
5
6
7
8

Example

E D I T I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S 3
T 4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5

Brute Force

Recursively construct an alignment column by
column

Brute Force

Recursively construct an alignment column by
column

Then note, that for extending the partially
constructed alignment optimally, one only needs
to know the already used length of prefix of A

and the length of prefix of B

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

Reconstructing a Solution

To reconstruct a solution, we go back from the
cell (n, m) to the cell (0, 0)

Reconstructing a Solution

To reconstruct a solution, we go back from the
cell (n, m) to the cell (0, 0)

If ED(i , j) = ED(i − 1, j) + 1, then there exists
an optimal alignment whose last column is a
deletion

Reconstructing a Solution

To reconstruct a solution, we go back from the
cell (n, m) to the cell (0, 0)

If ED(i , j) = ED(i − 1, j) + 1, then there exists
an optimal alignment whose last column is a
deletion

If ED(i , j) = ED(i , j − 1) + 1, then there exists
an optimal alignment whose last column is an
insertion

Reconstructing a Solution

To reconstruct a solution, we go back from the
cell (n, m) to the cell (0, 0)

If ED(i , j) = ED(i − 1, j) + 1, then there exists
an optimal alignment whose last column is a
deletion

If ED(i , j) = ED(i , j − 1) + 1, then there exists
an optimal alignment whose last column is an
insertion

If ED(i , j) = ED(i − 1, j − 1) + diff(A[i], B [j]),
then match (if A[i] = B [j]) or mismatch (if
A[i] ̸= B [j])

Example
E D I T I N G

D
I
S
T
A
N
C
E

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5

insertion

deletio
n

Example
E D I T I N G

D
I
S
T
A
N
C
E

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5

E

G

insertion

deletio
n

Example
E D I T I N G

D
I
S
T
A
N
C
E

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5

C E
- G

insertion

deletio
n

Example
E D I T I N G

D
I
S
T
A
N
C
E

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5

N C E

N - G

insertion

deletio
n

Example
E D I T I N G

D
I
S
T
A
N
C
E

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5

A N C E

I N - G

insertion

deletio
n

Example
E D I T I N G

D
I
S
T
A
N
C
E

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5

T A N C E

T I N - G

insertion

deletio
n

Example
E D I T I N G

D
I
S
T
A
N
C
E

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5

S T A N C E
- T I N - G

insertion

deletio
n

Example
E D I T I N G

D
I
S
T
A
N
C
E

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5

I S T A N C E

I - T I N - G

insertion

deletio
n

Example
E D I T I N G

D
I
S
T
A
N
C
E

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5

D I S T A N C E

D I - T I N - G

insertion

deletio
n

Example
E D I T I N G

D
I
S
T
A
N
C
E

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5

- D I S T A N C E

E D I - T I N - G

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

Saving Space

When filling in the matrix it is enough to keep
only the current column and the previous
column:

0

i

n

0

i

n

0 m 0j j m

Saving Space

When filling in the matrix it is enough to keep
only the current column and the previous
column:

0

i

n

0

i

n

0 m 0j j m

Thus, one can compute the edit distance of two
given strings A[1 . . . n] and B [1 . . . m] in time
O(nm) and space O(min{n, m}).

Reconstructing a Solution

However we need the whole table to find an
actual alignment (we trace an alignment from
the bottom right corner to the top left corner)

Reconstructing a Solution

However we need the whole table to find an
actual alignment (we trace an alignment from
the bottom right corner to the top left corner)

There exists an algorithm constructing an
optimal alignment in time O(nm) and space
O(n + m) (Hirschberg’s algorithm)

Weighted Edit Distance

The cost of insertions, deletions, and
substitutions is not necessarily identical

Spell checking: some substitutions are more
likely than others

Biology: some mutations are more likely than
others

Generalized Recurrence Relation

min

⎧
⎪⎨

⎪⎩ED (i − 1, j − 1) + substcost(A[i], B [j])

ED(i , j − 1) + inscost(B [j]),

ED(i − 1, j) + delcost(A[i]),

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

Knapsack Problem

Goal

Maximize
value ($) while
limiting total
weight (kg)

Applications

Classical problem in combinatorial optimization
with applications in resource allocation,
cryptography, planning

Applications

Classical problem in combinatorial optimization
with applications in resource allocation,
cryptography, planning

Weights and values may mean various resources
(to be maximized or limited):

Applications

Classical problem in combinatorial optimization
with applications in resource allocation,
cryptography, planning

Weights and values may mean various resources
(to be maximized or limited):

Select a set of T V commercials (each commercial
has duration and cost) so that the total revenue is
maximal while the total length does not exceed the
length of the available time slot

Applications

Classical problem in combinatorial optimization
with applications in resource allocation,
cryptography, planning

Weights and values may mean various resources
(to be maximized or limited):

Select a set of T V commercials (each commercial
has duration and cost) so that the total revenue is
maximal while the total length does not exceed the
length of the available time slot
Purchase computers for a data center to achieve
the maximal performance under limited budget

Problem Variations

knapsack

Problem Variations

knapsack

fractional
knapsack

discrete
knapsack

Problem Variations

knapsack

fractional
knapsack

discrete
knapsack

can take fractions
of items

each item is either taken
or not

Problem Variations

knapsack

fractional
knapsack

discrete
knapsack

with
repetitions

without
repetitions

unlimited
quantities

one of each
item

Problem Variations

knapsack

fractional
knapsack

discrete
knapsack

with
repetitions

without
repetitions

unlimited
quantities

one of each
item

greedy algorithm

Problem Variations

knapsack

fractional
knapsack

discrete
knapsack

with unlimited
repetitions quantities

without one of each
repetitions item

greedy algorithm

greedy does not work for
discrete knapsack! will
design a dynamic program-
ming solution

Example

6
$30

3
$14

4
$16

2
$9

10

knapsack

Example

6
$30

3
$14

4
$16

2
$9

$30

6 4

$16
w/o repeats total: $46

Example

6
$30

3
$14

4
$16

2
$9

$30

6 4

$16
w/o repeats total: $46

$30
6 2 2

$9 $9
w repeats total: $48

Example

6
$30

3
$14

4
$16

2
$9

$30

6 4

$16
w/o repeats total: $46

$30
6 2 2

$9 $9
w repeats total: $48

fractional

$30
6 3 1

$14 $4.5

total: $48.5

Without repetitions:
one of each item

With repetitions:
unlimited quantities

Knapsack with repetitions problem

Input:

Output:

Weights w0, . . . , wn−1 and values
v0, . . . , vn−1 of n items; total weight W

(vi ’s, wi ’s, and W are non-negative
integers).

The maximum value of items whose
weight does not exceed W . Each item
can be used any number of times.

Analyzing an Optimal Solution

Consider an optimal solution and an item in it:

Wwi

Analyzing an Optimal Solution

wi

Consider an optimal solution and an item in it:

W

If we take this item out then we get an optimal
solution for a knapsack of total weight W − wi .

Subproblems

Let value(u) be the maximum value of knapsack
of weight u

Subproblems

Let value(u) be the maximum value of knapsack
of weight u

value(u) = max {value(u − wi) + v i}
i : wi ≤w

Subproblems

Let value(u) be the maximum value of knapsack
of weight u

value(u) = max {value(u − wi) + v i}
i : wi ≤w

Base case: value(0) = 0

Subproblems

Let value(u) be the maximum value of knapsack
of weight u

value(u) = max {value(u − wi) + v i}
i : wi ≤w

Base case: value(0) = 0

This recurrence relation is transformed into
a recursive algorithm in a straightforward way

Recursive Algorithm
1 T = d i c t ()
2
3 def knapsack (w, v , u) :
4 i f u not in T :
5 T [u] = 0
6
7 for i in range (len (w)) :
8 i f w[i] < = u :
9 T [u] = max (T[u] ,

10 knapsack (w, v , u − w[i]) + v [i])
11
12 r etur n T [u]
13
14
15 p r i n t (knapsack (w=[6 , 3 , 4 , 2] ,
16 v = [30 , 14 , 16 , 9] , u =10))

Recursive into Iterative

As usual, one can transform a recursive
algorithm into an iterative one

Recursive into Iterative

As usual, one can transform a recursive
algorithm into an iterative one

For this, we gradually fill in an array T :
T [u] = value(u)

Recursive Algorithm

+ v [i])

1 def knapsack (W, w, v) :
2 T = [0] * (W + 1)
3
4 for u in range (1 , W + 1) :
5 for i in range (len (w)) :
6 i f w[i] < = u :
7 T [u] = max (T[u] , T [u − w[i]]
8
9 r etur n T[W]

10
11
12 p r i n t (knapsack (W=10 , w=[6 , 3 , 4 , 2] ,
13 v = [30 , 14 , 16 , 9]))

Example: W = 10

6

$30

3

$14

4

$16

2

$9

0 1 2 3 4 5 6 7 8 9 10

0 0 9 14 18 23 30 32 39 44

Example: W = 10

6

$30

3

$14

4

$16

2

$9

0 1 2 3 4 5 6 7 8 9 10

0 0 9 14 18 23 30 32 39 44

+30 +16 +14 +9

Example: W = 10

6

$30

3

$14

4

$16

2

$9

0 1 2 3 4 5 6 7 8 9 10

0 0 9 14 18 23 30 32 39 44 48

+30 +16 +14 +9

Subproblems Revisited

Another way of arriving at subproblems:
optimizing brute force solution

Subproblems Revisited

Another way of arriving at subproblems:
optimizing brute force solution

Populate a list of used items one by one

Brute Force: Knapsack with Repetitions

v , i te m s + [i]))

1 def knapsack (W, w, v , i te m s) :
2 weight = sum(w[i] for i in i te m s)
3 v a l u e = sum(v [i] for i in i te m s)
4
5 for i in range (len (w)) :
6 i f weight + w[i] < = W:
7 v a l u e = max(value ,
8 knapsack (W, w,
9

10 r etur n v a l u e
11
12 p r i n t (knapsack (W=10 , w=[6 , 3 , 4 , 2] ,
13 v = [30 , 14 , 16 , 9] , i te m s = []))

Subproblems

It remains to notice that the only important
thing for extending the current set of items is
the weight of this set

Subproblems

It remains to notice that the only important
thing for extending the current set of items is
the weight of this set

One then replaces items by their weight in the
list of parameters

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

Without repetitions:
one of each item

With repetitions:
unlimited quantities

Knapsack without repetitions problem

Input:

Output:

Weights w0, . . . , wn−1 and values
v0, . . . , vn−1 of n items; total weight W

(vi ’s, wi ’s, and W are non-negative
integers).

The maximum value of items whose
weight does not exceed W . Each item
can be used at most once.

Same Subproblems?

wn−1 W

Same Subproblems?

wn−1 W

W − wn−1

Same Subproblems?

wn−1 W

wn−1 W − wn−1

Same Subproblems?

wn−1 W

wn−1 W − wn−1

Subproblems

wn−1

If the last item is taken into an optimal solution:

W

then what is left is an optimal solution for a
knapsack of total weight W − wn−1 using items
0, 1, . . . , n − 2.

Subproblems

wn−1

If the last item is taken into an optimal solution:

W

then what is left is an optimal solution for a
knapsack of total weight W − wn−1 using items
0, 1, . . . , n − 2.

If the last item is not used, then the whole
knapsack must be filled in optimally with items
0, 1, . . . , n − 2.

Subproblems

For 0 ≤ u ≤ W and 0 ≤ i ≤ n, value(u, i) is
the maximum value achievable using a knapsack
of weight u and the first i items.

Subproblems

For 0 ≤ u ≤ W and 0 ≤ i ≤ n, value(u, i) is
the maximum value achievable using a knapsack
of weight u and the first i items.

Base case: value(u, 0) = 0, value(0, i) = 0

Subproblems

For 0 ≤ u ≤ W and 0 ≤ i ≤ n, value(u, i) is
the maximum value achievable using a knapsack
of weight u and the first i items.

Base case: value(u, 0) = 0, value(0, i) = 0

For i > 0, the item i − 1 is either used or not:

value(u, i) is equal to

max{value(u−wi−1, i−1)+vi−1, value(u, i−1)}

Recursive Algorithm

1 T = d i c t ()
2
3 def knapsack (w, v , u , i) :
4 i f (u , i) not i n T :
5 i f i = = 0 :
6 T [u , i] = 0
7 e l s e :
8 T [u , i] = knapsack (w, v , u , i − 1)
9 i f u > = w[i − 1] :

10 T [u , i] = max(T[u , i] ,
11 knapsack (w, v , u − w[i − 1] , i − 1) + v [i — 1]
12
13 r etur n T [u , i]
14
15
16 p r i n t (knapsack (w= [6 , 3 , 4 , 2] ,
17 v = [30 , 14 , 16 , 9] , u=10 , i = 4))

Iterative Algorithm

range (W + 1)]

f o r u i n range (W + 1) :
T [u] [0] = 0

f o r i i n range (1 , len (w) + 1) :
f o r u i n range (W + 1) :

T [u] [i] = T [u] [i − 1]
i f u > = w[i − 1] :

T [u] [i] = max(T[u] [i] ,
T [u − w[i − 1]] [i − 1] + v [i − 1])

r etur n T[W] [len (w)]

1 def knapsack (W, w, v) :
2 T = [[None] * (len (w) + 1) f o r _ i n
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 p r i n t (knapsack (W=10 , w=[6 , 3 , 4 , 2] ,
18 v = [30 , 14 , 16 , 9]))

Analysis

Running time: O(nW)

Analysis

Running time: O(nW)

Space: O(nW)

Analysis

Running time: O(nW)

Space: O(nW)

Space can be improved to O(W) in the iterative
version: instead of storing the whole table, store
the current column and the previous one

Reconstructing a Solution

As it usually happens, an optimal solution can
be unwound by analyzing the computed
solutions to subproblems

Reconstructing a Solution

As it usually happens, an optimal solution can
be unwound by analyzing the computed
solutions to subproblems

Start with u = W , i = n

Reconstructing a Solution

As it usually happens, an optimal solution can
be unwound by analyzing the computed
solutions to subproblems

Start with u = W , i = n

If value(u, i) = value(u, i − 1), then item i − 1
is not taken. Update i to i − 1

Reconstructing a Solution

As it usually happens, an optimal solution can
be unwound by analyzing the computed
solutions to subproblems

Start with u = W , i = n

If value(u, i) = value(u, i − 1), then item i − 1
is not taken. Update i to i − 1

Otherwise
value(u, i) = value(u − wi−1, i − 1) + vi−1 and
the item i − i is taken. Update i to i − 1 and u

to u − wi−1

Subproblems Revisited

How to implement a brute force solution for the
knapsack without repetitions problem?

Subproblems Revisited

How to implement a brute force solution for the
knapsack without repetitions problem?

Process items one by one. For each item, either
take into a bag or not

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

Recursive vs Iterative

If all subproblems must be solved then an
iterative algorithm is usually faster since it has
no recursion overhead

Recursive vs Iterative

If all subproblems must be solved then an
iterative algorithm is usually faster since it has
no recursion overhead

There are cases however when one does not
need to solve all subproblems and the knapsack
problem is a good example: assume that W and
all wi ’s are multiples of 100; then value(w) is
not needed if w is not divisible by 100

Polynomial Time?
The running time O(nW) is not polynomial
since the input size is proportional to log W , but
not W

Polynomial Time?
The running time O(nW) is not polynomial
since the input size is proportional to log W , but
not W

In other words, the running time is O(n2log W).

Polynomial Time?
The running time O(nW) is not polynomial
since the input size is proportional to log W , but
not W

In other words, the running time is O(n2log W).

E.g., for

W = 10 345 970 345 617 824 751

(twentу digits only!) the algorithm needs
roughly 1020 basic operations

Polynomial Time?
The running time O(nW) is not polynomial
since the input size is proportional to log W , but
not W

In other words, the running time is O(n2log W).

E.g., for

W = 10 345 970 345 617 824 751

(twentу digits only!) the algorithm needs
roughly 1020 basic operations

Solving the knapsack problem in truly
polynomial time is the essence of the P vs NP
problem, the most important open problem in
Computer Science (with a bounty of $1M)

Fractional Knapsack

The time complexity of the Fractional Knapsack
problem is O(N log N).
This complexity arises because the problem is
typically solved using a greedy algorithm, which
involves sorting the items based on their value-to-
weight ratio and then adding them to the knapsack in
this sorted order until the knapsack's capacity is
reached or all items are considered

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

Chain matrix multiplication

Input:

Output:

Chain of n matrices A0, . . . , An−1 to be
multiplied.

An order of multiplication minimizing the
total cost of multiplication.

Clarifications

Denote the sizes of matrices A0, . . . , An−1 by

m0 × m1, m1 × m2, . . . , mn−1 × mn

respectively. I.e., the size of Ai is mi × mi +1

Clarifications

Denote the sizes of matrices A0, . . . , An−1 by

m0 × m1, m1 × m2, . . . , mn−1 × mn

respectively. I.e., the size of Ai is mi × mi +1

Matrix multiplication is not commutative (in

general, A × B ≠ B × A), but it is associative:

A × (B × C) = (A × B) × C

Clarifications

Denote the sizes of matrices A0, . . . , An−1 by

m0 × m1, m1 × m2, . . . , mn−1 × mn

respectively. I.e., the size of Ai is mi × mi +1

Matrix multiplication is not commutative (in

general, A × B ≠ B × A), but it is associative:

A × (B × C) = (A × B) × C

Thus A × B × C × D can be computed, e.g., as
(A × B) × (C × D) or (A × (B × C)) × D

Clarifications

Denote the sizes of matrices A0, . . . , An−1 by

m0 × m1, m1 × m2, . . . , mn−1 × mn

respectively. I.e., the size of Ai is mi × mi +1

Matrix multiplication is not commutative (in

general, A × B ≠ B × A), but it is associative:

A × (B × C) = (A × B) × C

Thus A × B × C × D can be computed, e.g., as
(A × B) × (C × D) or (A × (B × C)) × D

The cost of multiplying two matrices of size
p × q and q × r is pqr

Example: A × ((B × C) × D)

A B C
50 × 20 20 × 1 1 × 10

D
10 × 100

× × ×

cost:

Example: A × ((B × C) × D)

A
50 × 20

B × C
20 × 10

D
10 × 100

× ×

cost: 20 · 1 · 10

Example: A × ((B × C) × D)

A
50 × 20

B × C × D
20 × 100

×

cost: 20 · 1 · 10 + 20 · 10 · 100

Example: A × ((B × C) × D)

A × B × C × D
50 × 100

cost: 20 · 1 · 10 + 20 · 10 · 100 + 50 · 20 · 100 = 120 200

Example: (A × B) × (C × D)

A B C
50 × 20 20 × 1 1 × 10

D
10 × 100

× × ×

cost:

Example: (A × B) × (C × D)

A × B
50 × 1

C
1 × 10

D
10 × 100

× ×

cost: 50 · 20 · 1

Example: (A × B) × (C × D)

A × B
50 × 1

C × D
1 × 100

×

cost: 50 · 20 · 1 + 1 · 10 · 100

Example: (A × B) × (C × D)

A × B × C × D
50 × 100

cost: 50 · 20 · 1 + 1 · 10 · 100 + 50 · 1 · 100 = 7 000

Order as a Full Binary Tree

D

C

A B

((A × B) × C) ×

D

A

D

B C

A × ((B × C) × D)

D

A

B C

(A × (B × C)) × D

Analyzing an Optimal Tree

A0, . . . , Ai−1
Ai , . . . , Aj−1 Ak , . . . , An−1

Aj , . . . , Ak−1

each subtree computes
the product of Ap , . . . , Aq for some p ≤ q

Subproblems

Let M(i , j) be the minimum cost of computing
Ai × · · · × Aj−1

Subproblems

Let M(i , j) be the minimum cost of computing
Ai × · · · × Aj−1

Then

M(i , j) = min {M(i , k) + M(k , j) + mi ·
mk · m j}

i<k<j

Subproblems

Let M(i , j) be the minimum cost of computing
Ai × · · · × Aj−1

Then

M(i , j) = min {M(i , k) + M(k , j) + mi · mk

· m j}
i<k<j

Base case: M(i , i + 1) = 0

Recursive Algorithm

Converting to an Iterative Algorithm

We want to solve subproblems going from
smaller size subproblems to larger size ones

The size is the number of matrices needed to be
multiplied: j − i

A possible order:

Example

The matrices have size 4 x 10, 10 x 3, 3 x 12, 12 x 20, 20 x 7

Example

M [3, 5] = 1140

The matrices have size 4 x 10, 10 x 3, 3 x 12, 12 x 20, 20 x 7

Iterative Algorithm

Final Remarks

Running time: O(n3)

Final Remarks

Running time: O(n3)

To unwind a solution, go from the cell (0, n) to
a cell (i , i + 1)

Final Remarks

Running time: O(n3)

To unwind a solution, go from the cell (0, n) to
a cell (i , i + 1)

Brute force search: recursively enumerate all
possible trees

Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
2. : Subproblems and Recurrence Relation
3. : Reconstructing a Solution
4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
3. : Final Remarks

3 3: Knapsack

1. : Knapsack with Repetitions
2. : Knapsack without Repetitions
3. : Final Remarks

4 4: Chain Matrix Multiplication

1. : Chain Matrix Multiplication
2. : Summary

Step 1 (the most important step)

Define subproblems and write down a
recurrence relation (with a base case)

either by analyzing the structure
of an optimal solution, or

by optimizing a brute force
solution

Subproblems: Review

1 Longest increasing subsequence: LIS (i) is the
length of longest common subsequence ending
at element A[i]

2 Edit distance: ED(i , j) is the edit distance
between prefixes of length i and j

3 Knapsack: K (w) is the optimal value of
a knapsack of total weight w

4 Chain matrix multiplication M(i , j) is the
optimal cost of multiplying matrices through i
to j − 1

Step 2

Convert a recurrence relation into a
recursive algorithm:

store a solution to each
subproblem in a table

before solving a subproblem check
whether its solution is already
stored in the table

Step 3

Convert a recursive algorithm into an
iterative algorithm:

initialize the table

go from smaller subproblems to
larger ones

specify an order of subproblems

Step 4

Prove an upper bound on the running
time. Usually the product of the
number of subproblems and the time
needed to solve a subproblem is a
reasonable estimate.

Step 5

Uncover a solution

Step 6

Exploit the regular structure of the
table to check whether space can be
saved

Recursive vs Iterative

Advantages of iterative approach:
No recursion overhead
May allow saving space by exploiting a regular
structure of the table

Advantages of recursive approach:
May be faster if not all the subproblems need to be
solved
An order on subproblems is implicit

	Slide 1: Analysis and Design of Algorithms
	Slide 2: Outline
	Slide 3: Dynamic Programming
	Slide 4: Dynamic Programming
	Slide 5: Dynamic Programming
	Slide 6: Dynamic Programming
	Slide 7: Fibonacci numbers
	Slide 8: Computing Fibonacci Numbers
	Slide 9: Computing Fibonacci Numbers
	Slide 10: Recursion Tree
	Slide 11: Recursion Tree
	Slide 12: Running Time
	Slide 13: Running Time
	Slide 14: Running Time
	Slide 15: Running Time
	Slide 16: Running Time
	Slide 17: Reason
	Slide 18: Reason
	Slide 19: Reason
	Slide 20: Memoization
	Slide 21: Memoization
	Slide 22: Hm...
	Slide 23: Hm...
	Slide 24: Hm...
	Slide 25: Hm...
	Slide 26: Hm...
	Slide 27: Hm...
	Slide 28: Hm...
	Slide 29: Iterative Algorithm
	Slide 30: Hm Again...
	Slide 31: Hm Again...
	Slide 32: Running Time
	Slide 33: Running Time
	Slide 34: Running Time
	Slide 35: Running Time
	Slide 36: Summary
	Slide 37: Summary
	Slide 38: Outline
	Slide 39: Longest Increasing Subsequence
	Slide 40: Example
	Slide 41: Example
	Slide 42: Analyzing an Optimal Solution
	Slide 43: Analyzing an Optimal Solution
	Slide 44: Analyzing an Optimal Solution
	Slide 45: Analyzing an Optimal Solution
	Slide 46: Analyzing an Optimal Solution
	Slide 47: Subproblems and Recurrence Relation
	Slide 48: Subproblems and Recurrence Relation
	Slide 49: Subproblems and Recurrence Relation
	Slide 50: Subproblems and Recurrence Relation
	Slide 51: Algorithm
	Slide 52: Algorithm
	Slide 53: Algorithm
	Slide 54: Memoization
	Slide 55: Running Time
	Slide 56: Table and Recursion
	Slide 57: Table and Recursion
	Slide 58: Table and Recursion
	Slide 59: Iterative Algorithm
	Slide 60: Iterative Algorithm
	Slide 61: Iterative Algorithm
	Slide 62: Outline
	Slide 63: Reconstructing a Solution
	Slide 64: Reconstructing a Solution
	Slide 65: Adjusting the Algorithm
	Slide 66: Unwinding Solution
	Slide 67: Example
	Slide 68: Example
	Slide 69: Example
	Slide 70: Example
	Slide 71: Example
	Slide 72: Example
	Slide 73: Example
	Slide 74: Example
	Slide 75: Example
	Slide 76: Example
	Slide 77: Example
	Slide 78: Unwinding Solution
	Slide 79: Reconstructing Again
	Slide 80: Reconstructing Again
	Slide 81: Reconstructing Again
	Slide 82: Reconstructing Again
	Slide 83: Reconstructing Again
	Slide 84: Summary Optimal substructure property: any prefix of an optimal increasing subsequence must be a longest increasing subsequence ending at this particular element
	Slide 85: Summary
	Slide 86: Summary
	Slide 87: Summary
	Slide 88: Summary
	Slide 89: Outline
	Slide 90: The Most Creative Part
	Slide 91: The Most Creative Part
	Slide 92: The Most Creative Part
	Slide 93: The Most Creative Part
	Slide 94: Brute Force: Plan
	Slide 95: Brute Force: Plan
	Slide 96: Brute Force: Plan
	Slide 97: Brute Force: Plan
	Slide 98: Brute Force: Plan
	Slide 99: Brute Force: Code
	Slide 100: Optimizing
	Slide 101: Optimizing
	Slide 102: Optimizing
	Slide 103: Optimizing
	Slide 104: Optimized Code
	Slide 105: Optimizing Further
	Slide 106: Optimizing Further
	Slide 107: Optimizing Further
	Slide 108: Optimizing Further
	Slide 109: Resulting Code
	Slide 110: Resulting Code
	Slide 111: Summary
	Slide 112: Summary
	Slide 113: Summary
	Slide 114: Summary
	Slide 115: Outline
	Slide 116: Statement
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121: Example: EDITING → DISTANCE
	Slide 122: Example: EDITING → DISTANCE
	Slide 123
	Slide 124
	Slide 125: Analyzing an Optimal Alignment
	Slide 126: Analyzing an Optimal Alignment
	Slide 127: Analyzing an Optimal Alignment
	Slide 128: Analyzing an Optimal Alignment
	Slide 129: Subproblems
	Slide 130: Subproblems
	Slide 131: Subproblems
	Slide 132: Recurrence Relation
	Slide 133: Recurrence Relation
	Slide 134: Recursive Algorithm
	Slide 135: Converting to a Recursive Algorithm
	Slide 136: Converting to a Recursive Algorithm
	Slide 137: Filling the Table
	Slide 138: Iterative Algorithm
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148: Brute Force
	Slide 149: Outline
	Slide 150: Reconstructing a Solution
	Slide 151: Reconstructing a Solution
	Slide 152: Reconstructing a Solution
	Slide 153: Reconstructing a Solution
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164: Outline
	Slide 165: Saving Space
	Slide 166: Saving Space
	Slide 167: Reconstructing a Solution
	Slide 168: Reconstructing a Solution
	Slide 169: Weighted Edit Distance
	Slide 170: Generalized Recurrence Relation
	Slide 171: Outline
	Slide 172: Knapsack Problem
	Slide 173: Applications
	Slide 174: Applications
	Slide 175: Applications
	Slide 176: Applications
	Slide 177: Problem Variations
	Slide 178: Problem Variations
	Slide 179: Problem Variations
	Slide 180: Problem Variations
	Slide 181: Problem Variations
	Slide 182: Problem Variations
	Slide 183
	Slide 184
	Slide 185
	Slide 186: Example
	Slide 187: Without repetitions: one of each item
	Slide 188: Knapsack with repetitions problem
	Slide 189: Analyzing an Optimal Solution
	Slide 190: Analyzing an Optimal Solution
	Slide 191: Subproblems
	Slide 192: Subproblems
	Slide 193: Subproblems
	Slide 194: Subproblems
	Slide 195: Recursive Algorithm
	Slide 196: Recursive into Iterative
	Slide 197: Recursive into Iterative
	Slide 198: Recursive Algorithm
	Slide 199
	Slide 200
	Slide 201
	Slide 202: Subproblems Revisited
	Slide 203: Subproblems Revisited
	Slide 204: Brute Force: Knapsack with Repetitions
	Slide 205: Subproblems
	Slide 206: Subproblems
	Slide 207: Outline
	Slide 208: Without repetitions: one of each item
	Slide 209: Knapsack without repetitions problem
	Slide 210: Same Subproblems?
	Slide 211: Same Subproblems?
	Slide 212: Same Subproblems?
	Slide 213: Same Subproblems?
	Slide 214: Subproblems
	Slide 215: Subproblems
	Slide 216: Subproblems
	Slide 217: Subproblems
	Slide 218: Subproblems
	Slide 219: Recursive Algorithm
	Slide 220: Iterative Algorithm
	Slide 221: Analysis
	Slide 222: Analysis
	Slide 223: Analysis
	Slide 224: Reconstructing a Solution
	Slide 225: Reconstructing a Solution
	Slide 226: Reconstructing a Solution
	Slide 227: Reconstructing a Solution
	Slide 228: Subproblems Revisited
	Slide 229: Subproblems Revisited
	Slide 230
	Slide 231: Outline
	Slide 232: Recursive vs Iterative
	Slide 233: Recursive vs Iterative
	Slide 234: Polynomial Time?
	Slide 235: Polynomial Time?
	Slide 236: Polynomial Time?
	Slide 237: Polynomial Time?
	Slide 238: Fractional Knapsack
	Slide 239: Outline
	Slide 240: Chain matrix multiplication
	Slide 241: Clarifications
	Slide 242: Clarifications
	Slide 243: Clarifications
	Slide 244: Clarifications
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253: Order as a Full Binary Tree
	Slide 254: Analyzing an Optimal Tree
	Slide 255: Subproblems
	Slide 256: Subproblems
	Slide 257: Subproblems
	Slide 258: Recursive Algorithm
	Slide 259: Converting to an Iterative Algorithm
	Slide 260: Example
	Slide 261: Example
	Slide 262: Iterative Algorithm
	Slide 263: Final Remarks
	Slide 264: Final Remarks
	Slide 265: Final Remarks
	Slide 266: Outline
	Slide 267: Step 1 (the most important step)
	Slide 268: Subproblems: Review
	Slide 269: Step 2
	Slide 270: Step 3
	Slide 271: Step 4
	Slide 272: Uncover a solution
	Slide 273: Exploit the regular structure of the table to check whether space can be saved
	Slide 274: Recursive vs Iterative

