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Dynamic Programming

Extremely powerful algorithmic technique with 
applications in optimization, scheduling, 
planning, economics, bioinformatics, etc

At contests, probably the most popular type of 
problems

A solution is usually not so easy to find, but 
when found, is easily implementable

Need a lot of practice!



Fibonacci numbers

Fibonacci numbers

⎧
⎨⎪ 0 ,

Fn =  1,
⎪⎩ Fn−1 +  

Fn−2,

n =  0 , 

n =  1 , 

n >  1 .

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, .  .  .
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Computing Fn

Input: An integer n ≥  0.

Output: The n-th Fibonacci number Fn.

1
2
3
4

def f i b ( n ) :
i f  n < =   1 :

r etur n   n
return  f i b ( n −  1 ) +   f i b ( n −  2 )
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Running Time

Essentially, the algorithm computes Fn as the 
sum of Fn 1’s

Hence its running time is O(Fn)

But Fibonacci numbers grow exponentially fast: 

Fn ≈  𝜑n, where 𝜑 =  1.618 .  .  .  is the golden ratio 

E.g., F150 is already 31 decimal digits long

The Sun may die before your computer returns

F150
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Reason

Many computations are repeated

“Those who cannot remember the past are 

condemned to repeat it.” (George Santayana) 

A simple, but crucial idea: instead of
recomputing the intermediate results, let’s store 
them once they are computed
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def f i b ( n ) :
i f  n < =   1 :

r etur n   n
return  f i b ( n −  1 ) +   f i b ( n −  2 )



Memoization

def f i b ( n ) :
i f  n < =   1 :

r etur n   n
return  f i b ( n −  1 ) +   f i b ( n −  2 )

T  =  dict()

i f  n < =   1 :
T[n] = n

e l se :
T[n] = f i b ( n −  1 ) +  f i b ( n −  2 )

1
2
3
4

1
2
3 def f i b ( n ) :
4 if n not in T: 
5
6
7
8
9

10 return T[n]
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But do we really need all this fancy stuff 
(recursion, memoization, dictionaries) to solve 
this simple problem?

After all, this is how you would compute F5 by 
hand:

F0 =  0, F1 =  1
F2 =  0 +  1 =  1
F3 =  1 +  1 =  2
F4 =  1 +  2 =  3



Hm...

1

2

3

4

5

But do we really need all this fancy stuff 
(recursion, memoization, dictionaries) to solve 
this simple problem?

After all, this is how you would compute F5 by 
hand:

F0 =  0, F1 =  1
F2 =  0 +  1 =  1
F3 =  1 +  1 =  2
F4 =  1 +  2 =  3
F5 =  2 +  3 =  5



Iterative Algorithm

1
2

def f i b ( n ) :
T  =   [ None ] *  ( n +  1 )

3 T [  0 ] ,  T [  1 ] =  0 ,  1
4
5 for i in  range ( 2 ,  n +   1 ) :
6 T [  i ]  =  T [ i −  1 ] +  T [  i −  2 ]
7
8 r etur n  T [  n ]
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Hm Again...

But do we really need to waste so much space?

new_current  =   p r e v i o u s  +   c u r r e n t
p r e v i o u s , c u r r e n t  =   c u r r e n t , new_current

1 def f i b ( n ) :
2 i f  n <=  1 :
3 r etur n   n
4
5 p r e v i o u s , c u r r e n t  = 0 ,  1

6 for  _  in  range ( n −  1 ) : 7
8
9

10 r etur n   c u r r e n t
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Running Time

O(n) additions

On the other hand, recall that Fibonacci 
numbers grow exponentially fast: the binary 
length of Fn is O(n)

In theory: we should not treat such additions as 
basic operations

In practice: just F100 does not fit into a 64-bit 
integer type anymore, hence we need bignum 
arithmetic
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Summary

The key idea of dynamic programming: avoid 
recomputing the same thing again!

At the same time, the case of Fibonacci 
numbers is a slightly artificial example of 
dynamic programming since it is clear from the 
very beginning what intermediate results we 
need to compute the final result
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Longest Increasing Subsequence

Longest increasing 
subsequence

Input: 

Output:

An array A =  [a0, a1, .  .  .  ,  an−1].

A longest increasing subsequence (LIS), 
i.e., ai1 ,  ai2 ,  .  .  .  ,  aik such that
i1 <  i2 <  . .  .  <  ik , ai1 <  ai2 <  · · · <  aik , 
and k is maximal.
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Analyzing an Optimal Solution

Consider the last element x of an optimal 
increasing subsequence and its previous 
element z :

z x

First of all, z <  x

Moreover, the prefix of the IS ending at z must be 
an optimal IS ending at z as otherwise the 
initial IS would not be optimal:

z x

Optimal substructure by “cut-and-paste” trick
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Subproblems and Recurrence Relation

Let LIS (i ) be the optimal length of a LIS ending 
at A[i ]

Then

LIS (i ) =  1+max{LIS ( j ) :  j <  i and A[j] <  A[i ]}

Convention: maximum of an empty set is equal 
to zero

Base case: LIS (0) =  1
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Algorithm

When we have a recurrence relation at hand, 
converting it to a recursive algorithm with 
memoization is just a technicality

We will use a table T to store the results:
T [i ] =  LIS (i )

Initially, T is empty. When LIS (i ) is computed, 
we store its value at T [i ] (so that we will never 
recompute LIS (i ) again)

The exact data structure behind T is not that 
important at this point: it could be an array or 
a hash table



Memoization

1  T  =  d i c t  ( )
2
3 def l i s (A, i )  :
4 i f i  not in  T :
5 T [  i ]  = 1
6
7 for j in  range ( i )  :
8 i f  A[ j ] <  A[ i ] :
9 T [  i ]  =  max(T[  i ] , l i s (A, j )  +  1 )

10
11 r etur n   T [  i ]
12
13  A =   [ 7 ,  2 ,  1 ,  3 ,  8 ,  4 ,  9 ,  1 ,  2 ,  6 ,  5 ,  9 ,  3 ]
14 p r i n t  (max( l i s (A,  i )   for i in  range ( len ( A )  ) )  )



Running Time

The running time is quadratic (O(n2)): there are n 

“serious” recursive calls (that are not just table look-
ups), each of them needs time O(n) (not counting 
the inner recursive calls)
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Table and Recursion

We need to store in the table T the value of
LIS (i ) for all i from 0 to n −  1

Reasonable choice of a data structure for T : 
an array of size n

Moreover, one can fill in this array iteratively 
instead of recursively



Iterative Algorithm

1

1
2

def l i s (A  ) :
T  =   [ None ]  *  len (A)

3
4 for i in  range ( len (A  ) ) :
5 T [  i ]  =  1
6 for j in  range ( i )  :
7 i f  A[ j ] <  A[ i ]  and T [  i ] <  T [  j ] +   1 :
8 T [  i ]  =  T [  j ]  +  1
9
0 r etur n  max (T[  i ] for i in  range ( len ( A )  ) )
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Iterative Algorithm
1
2

def l i s (A  ) :
T  =   [ None ]  *  len (A)

3
4 for i in  range ( len (A  ) ) :
5 T [  i ]  =  1
6 for j in  range ( i )  :
7 i f  A[ j ] <  A[ i ]  and T [  i ] <  T [  j ] +   1 :
8 T [  i ]  =  T [  j ]  +  1
9
0 r etur n  max (T[  i ] for i in  range ( len ( A )  ) )1

Crucial property: when computing T [i ], T [j] for 
all j <  i have already been computed

Running time: O(n2)
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How to reconstruct an optimal IS?



Reconstructing a Solution

How to reconstruct an optimal IS?

In order to reconstruct it, for each subproblem 
we will keep its optimal value and a choice 
leading to this value



Adjusting the Algorithm

prev =  [None] * len(A)

prev[i] =  -1
for j in  range ( i )  :

i f  A[ j ] <  A[ i ]  and T [  i ] <  T [  j ]  +   1 : 
T [  i ]  =  T [  j ]  +  1

1 def l i s (A  ) :

2 T  =   [ None ]  *  len (A) 
3
4
5 for i in  range ( len (A ) ) :
6 T [  i ]  =  1
7
8
9

10
11 prev[i] =  j



Unwinding Solution

1
2
3
4
5
6
7
8
9

10
11
12

l a s t  =  0
for i in  range ( 1 ,  len (A  ) ) : 

i f  T [  i ] >  T [  l a s t ] :
l a s t  =   i

l i s =   [ ]
c u r r e n t  =   l a s t
while  c u r r e n t > =   0 :

l i s . append ( c u r r e n t )    
c u r r e n t  =   p r e v [ c u r r e n t ]

l i s . r e v e r s e ( )
r etur n   [ A[ i ] for i in l i s ]
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Example

7 2 1 3 8 4 9 1 2 6 5 9 3 8 1

1 1 1 2 3 3 4 1 2 4 4 5 3 5 1

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

T

prev -1-1 -1 -1 1 3 3 4 -1 2 5 5 9 8 9 -1



Unwinding Solution

1
2
3
4
5
6
7
8
9

10
11
12

l a s t  =  0
for i in  range ( 1 ,  len (A  ) ) : 

i f  T [  i ] >  T [  l a s t ] :
l a s t  =   i

l i s =   [ ]
c u r r e n t  =   l a s t
while  c u r r e n t > =   0 :

l i s . append ( c u r r e n t )    
c u r r e n t  =   p r e v [ c u r r e n t ]

l i s . r e v e r s e ( )
r etur n   [ A[ i ] for i in l i s ]
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Summary
• Optimal substructure property: any prefix of an optimal 

increasing subsequence must be a longest increasing 
subsequence ending at this particular element

• Subproblem: the length of an optimal increasing 
subsequence ending at i -th element

• A recurrence relation for subproblems can be 
immediately converted into a recursive algorithm with 
memoization

• A recursive algorithm, in turn, can be converted into an 
iterative one

• An optimal solution can be recovered either by using an 
additional bookkeeping info or by using the computed 
solutions to all subproblems
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The Most Creative Part

In most DP algorithms, the most creative part is 
coming up with the right notion of a subproblem 
and a recurrence relation

When a recurrence relation is written down, it 
can be wrapped with memoization to get
a recursive algorithm

In the previous section, we arrived at a 
reasonable subproblem by analyzing the 
structure of an optimal solution

In this section, we’ll provide an alternative way 
of arriving at subproblems: implement a naive 
brute force solution, then optimize it
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Brute Force: Plan

Need the longest increasing subsequence? No 
problem! Just iterate over all subsequences and 
select the longest one:

Start with an empty sequence
Extend it element by element recursively 
Keep track of the length of the sequence

This is going to be slow, but not to worry: we 
will optimize it later



Brute Force: Code

len (A  ) ) :

seq +   [ i ] )  )

1 def l i s (A,  seq ) :
2 r e s u l t  =  len ( seq ) 
3
4 i f len ( seq ) = =   0 :
5 l a s t _ i  n d e x  =  −1
6 l a s t _ e  l e m e n t  =   f l o a t  ( "−  i n f "  )
7 e l se :
8 l a s t _ i  n d e x  =   seq [ −1]

9 l a s t _ e  l e m e n t  =  A[ l a s t _ i  n d e x ] 
10
11 for i in  range ( l a s t _ i  n d e x  +  1 ,
12 i f  A[ i ]  >   l a s t _ e  l e m e n t :
13 r e s u l t  =  max( r e s u l t , l i s (A,  
14
15 return  r e s u l t
16
17 p r i n t  ( l i s ( A = [  7 ,  2 ,  1 ,  3 ,  8 ,  4 ,  9 ] , seq = [  ] ) )
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Optimizing

At each step, we are trying to extend the 
current sequence

For this, we pass the current sequence to each 
recursive call

At the same time, code inspection reveals that 
we are not using all of the sequence: we are only 
interested in its last element and its length

Let’s optimize!



Optimized Code

r e s u l t  =  seq_len

1 def l i s (A,  seq_len , l a s t _ i  n d e x ) :
2 i f l a s t _ i  n d e x = =  −1:
3 l a s t _ e  l e m e n t  =   f l o a t  ( "−  i n f "  )
4 e l se :
5 l a s t _ e  l e m e n t  =  A[ l a s t _ i  n d e x ] 
6
7
8
9 for i in  range ( l a s t _ i  n d e x  +  1 ,  len (A  ) ) :

10 i f  A[ i ]  >   l a s t _ e  l e m e n t :
11 r e s u l t  =  max( r e s u l t ,
12 l i s (A,  seq_len +  1 , i ) )  
13
14 return  r e s u l t
15
16 p r i n t  ( l i s ( [ 3 , 2 ,  7 ,  8 ,  9 ,  5 ,  8 ] ,  0 ,  −1))
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Optimizing Further

Inspecting the code further, we realize that 
seq_len is not used for extending the current 
sequence (we don’t need to know even the 
length of the initial part of the sequence to 
optimally extend it)

More formally, for any x ,
extend(A, seq_len, i) is equal to
extend(A, seq_len - x, i) + x

Hence, can optimize the code as follows: 

max(result, 1 + seq_len + extend(A, 0, i)) 

Excludes seq_len from the list of parameters!



Resulting Code

1 +
i f  A[ i ]  >   l a s t _ e  l e m e n t :

r e s u l t  =  max( r e s u l t , l i s (A,  i ) )

1 def l i s (A,  l a s t _ i  n d e x ) :
2 i f l a s t _ i  n d e x = =  −1:
3 l a s t _ e  l e m e n t  =   f l o a t  ( "−  i n f "  )
4 e l se :

5 l a s t _ e  l e m e n t  =  A[ l a s t _ i  n d e x ] 
6
7 r e s u l t  =  0
8

9 for i in  range ( l a s t _ i  n d e x  +  1 ,  len (A  ) ) : 
10
11
12
13 return  r e s u l t
14
15 p r i n t  ( l i s (  [ 8 , 2 ,  3 ,  4 ,  5 ,  6 ,  7 ] , −1))



Resulting Code

i f  A[ i ]  >   l a s t _ e  l e m e n t : 
r e s u l t  =  max( r e s u l t , 1 + l i s (A,  i ) )

1 def l i s (A,  l a s t _ i  n d e x ) :
2 i f l a s t _ i  n d e x = =  −1:
3 l a s t _ e  l e m e n t  =   f l o a t  ( "−  i n f "  )
4 e l se :

5 l a s t _ e  l e m e n t  =  A[ l a s t _ i  n d e x ] 
6
7 r e s u l t  =  0
8

9 for i in  range ( l a s t _ i  n d e x  +  1 ,  len (A  ) ) : 
10
11
12
13 return  r e s u l t
14
15 p r i n t  ( l i s (  [ 8 , 2 ,  3 ,  4 ,  5 ,  6 ,  7 ] , −1))

It remains to add memoization!
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Summary

Subproblems (and recurrence relation on them) 
is the most important ingredient of a dynamic 
programming algorithm

Two common ways of arriving at the right 
subproblem:

Analyze the structure of an optimal solution 
Implement a brute force solution and optimize it
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Statement

Edit distance

Input:

Output:

Two strings A[0 .  .  .  n −  1] and
B [0 .  .  .  m −  1].

The minimal number of insertions, 
deletions, and substitutions needed to 
transform A to B . This number is known 
as edit distance or Levenshtein distance.
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Example: EDITING → DISTANCE

EDITING

remove E 

DITING

insert S 

DISTING

replace I with by A

DISTANG

replace G with C

DISTANC

insert E 

DISTANCE



Example: alignment

E D I — T I N G —

— D I S T A N C E

cost: 5



E D I — T I N G —

— D I S T A N C E

deletion insertions

cost: 5

Example: alignment

substitutions/mismatches
matches
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Analyzing an Optimal Alignment

A[0 .  .  .  n − 1]

B [0 .  .  .  m − 1]

A[0 .  .  .  n − 1] —

B [0 .  .  .  m − 2] B [m − 1]

insertion

A[0 .  .  .  n − 2] A[n − 1]

B [0 .  .  .  m − 1] —

deletion

A[0 .  .  .  n − 2] A[n − 1]

B [0 .  .  .  m − 2] B [m − 1]match/mismatch
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Subproblems

Let ED(i ,  j )  be the edit distance of
A[0 .  .  .  i − 1] and B [0 .  .  .  j − 1].

We know for sure that the last column of an 
optimal alignment is either an insertion, a 
deletion, or a match/mismatch.

What is left is an optimal alignment of the 
corresponding two prefixes (by cut-and-paste).



Recurrence Relation

⎧
⎨⎪ED(i ,  j − 1) +  1

ED(i ,  j) =  min ED(i − 1, j) +  1
⎪⎩ED (i − 1, j − 1) +  diff(A[i ], B[j])



Recurrence Relation

⎧
⎨⎪ED(i ,  j − 1) +  1

ED(i ,  j) =  min ED(i − 1, j) +  1
⎪⎩ED (i − 1, j − 1) +  diff(A[i ], B[j])

Base case: ED(i ,  0) =  i , ED(0, j) =  j



Recursive Algorithm
1
2
3

T  =  d i c t  ( )

def  e d i t _ d  i s t a n c e (  a ,  b ,  i ,  j )  :
4 i f  not  (  i ,  j )   i n T :
5 i f  i = =  0 : T [  i ,  j ] =  j
6 e l i f  j = =  0 : T [  i ,  j ] =  i
7 e l s e :
8 d i f f =  0  i f  a [ i − 1 ] = =  b [ j − 1 ]  e l s e 1
9 T [  i ,  j ] =  min (

10 e d i t _ d  i s t a n c e (  a ,  b ,  i − 1 ,  j )  +  1 ,
11 e d i t _ d  i s t a n c e (  a ,  b ,  i ,  j − 1 ) +  1 ,
12 e d i t _ d  i s t a n c e (  a ,  b ,  i − 1 ,  j − 1 ) + d i f f )
13
14 return  T [  i ,  j ]
15
16
17
18

p r i n t (  e d i t _ d  i s t a n c e (  a=" e d i t i n g "  ,  b=" d i s t a n c e "  ,
i = 7  ,  j = 8 ) )



Converting to a Recursive Algorithm

Use a 2D table to store the intermediate results



Converting to a Recursive Algorithm

Use a 2D table to store the intermediate results

ED(i ,  j )  depends on ED(i − 1, j − 1),
ED(i − 1, j), and ED(i ,  j − 1):

0

i 

n

0 mj

insertion

deletio
n



Filling the Table

Fill in the table row by row or column by column:

0

i 

n

0

i 

n

0 m 0j j m



Iterative Algorithm

e l s e  1

f o r  i  i n  range (  1 ,  len (  a )  +  1 )  :
f o r  j  i n  range (  1 ,  len (  b )  +  1 )  :

d i f f =  0  i f  a [ i − 1 ] = =  b [ j − 1 ] 
T [  i ] [ j ] =  min ( T [  i − 1 ] [ j ] +  1 ,

T [  i ] [ j − 1 ] +  1 ,
T [  i − 1 ] [ j − 1 ] +  d i f f )

return  T [  len (  a )  ] [ len (  b )  ]

1 def  e d i t _ d  i s t a n c e (  a ,  b )  :
2 T  =  [ [ f l o a t (  "  i n f "  )  ]  * (  len (  b )  +  1 )
3 f o r _  i n  range (  len (  a )  +  1 )  ]
4 f o r  i  i n  range (  len (  a )  +  1 )  :
5 T [  i ] [ 0 ] =  i
6 f o r  j  i n  range (  len (  b )  +  1 )  :
7 T  [ 0 ] [ j ] =  j
8
9

10
11
12
13
14
15
16
17
18
19 p r i n t (  e d i t _ d  i s t a n c e (  a=" d i s t a n c e "  ,  b=" e d i t i n g "  ) )



Example

E D I T  I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S  3
T  4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1
2
3
4
5
6
7
8



Example

E D I T  I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S  3
T  4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1
2
3
4
5
6
7
8



Example

E D I T  I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S  3
T  4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1 1
2
3
4
5
6
7
8



Example

E D I T  I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S  3
T  4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1 1
2
3
4
5
6
7
8



Example

E D I T  I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S  3
T  4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1 1 1
2
3
4
5
6
7
8



Example

E D I T  I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S  3
T  4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1 1 1
2
3
4
5
6
7
8



Example

E D I T  I N G
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0
D 1
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Example

E D I T  I N G
0 1 2 3 4 5 6 7

0
D 1
I 2
S  3
T  4
A 5
N 6
C 7
E 8

0 1 2 3 4 5 6 7
1 1 1 2 3 4 5 6
2 2 2 1 2 3 4 5
3 3 3 2 2 3 4 5
4 4 4 3 2 3 4 5
5 5 5 4 3 3 4 5
6 6 6 5 4 4 3 4
7 7 7 6 5 5 4 4
8 7 8 7 6 6 5 5
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Brute Force

Recursively construct an alignment column by 
column

Then note, that for extending the partially 
constructed alignment optimally, one only needs 
to know the already used length of prefix of A 

and the length of prefix of B
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Reconstructing a Solution

To reconstruct a solution, we go back from the 
cell (n, m) to the cell (0, 0)

If ED(i ,  j )  = ED(i − 1, j )  + 1, then there exists 
an optimal alignment whose last column is a 
deletion

If ED(i ,  j )  = ED(i ,  j − 1) + 1, then there exists 
an optimal alignment whose last column is an 
insertion

If ED(i ,  j )  = ED(i − 1, j − 1) + diff(A[i ], B [j]),
then match (if A[i ] = B [j]) or mismatch (if
A[i ] ̸= B [j])
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Saving Space

When filling in the matrix it is enough to keep 
only the current column and the previous 
column:

0

i 

n

0

i 

n

0 m 0j j m

Thus, one can compute the edit distance of two 
given strings A[1 .  .  .  n] and B [1 .  .  .  m] in time 
O(nm) and space O(min{n, m}).
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actual alignment (we trace an alignment from 
the bottom right corner to the top left corner)



Reconstructing a Solution

However we need the whole table to find an 
actual alignment (we trace an alignment from 
the bottom right corner to the top left corner)

There exists an algorithm constructing an 
optimal alignment in time O(nm) and space 
O(n +  m) (Hirschberg’s algorithm)



Weighted Edit Distance

The cost of insertions, deletions, and 
substitutions is not necessarily identical

Spell checking: some substitutions are more 
likely than others

Biology: some mutations are more likely than 
others



Generalized Recurrence Relation

min

⎧
⎪⎨

⎪⎩ED (i − 1, j − 1) +  substcost(A[i ], B [j])

ED(i ,  j − 1) +  inscost(B [j]),

ED(i − 1, j )  +  delcost(A[i ]),
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Knapsack Problem

Goal

Maximize 
value ($) while 
limiting total 
weight (kg)
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Select a set of T V  commercials (each commercial 
has duration and cost) so that the total revenue is 
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length of the available time slot



Applications

Classical problem in combinatorial optimization 
with applications in resource allocation, 
cryptography, planning

Weights and values may mean various resources 
(to be maximized or limited):

Select a set of T V  commercials (each commercial 
has duration and cost) so that the total revenue is 
maximal while the total length does not exceed the 
length of the available time slot
Purchase computers for a data center to achieve 
the maximal performance under limited budget
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discrete 
knapsack
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of items

each item is either taken 
or not
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Problem Variations

knapsack

fractional 
knapsack

discrete 
knapsack

with unlimited
repetitions quantities

without one of each 
repetitions item

greedy algorithm

greedy does not work for 
discrete knapsack! will 
design a dynamic program- 
ming solution



Example

6
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Example

6
$30

3
$14

4
$16

2
$9

$30 

6 4

$16
w/o repeats total: $46

$30
6 2 2

$9 $9
w repeats total: $48

fractional

$30
6 3 1

$14 $4.5

total: $48.5



Without repetitions: 
one of each item

With repetitions: 
unlimited quantities



Knapsack with repetitions problem

Input:

Output:

Weights w0, .  .  .  ,  wn−1 and values
v0, .  .  .  ,  vn−1 of n items; total weight W 

(vi ’s, wi ’s, and W are non-negative 
integers).

The maximum value of items whose 
weight does not exceed W . Each item 
can be used any number of times.



Analyzing an Optimal Solution

Consider an optimal solution and an item in it:

Wwi



Analyzing an Optimal Solution

wi

Consider an optimal solution and an item in it:

W

If we take this item out then we get an optimal 
solution for a knapsack of total weight W − wi .



Subproblems

Let value(u) be the maximum value of knapsack 
of weight u
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Let value(u) be the maximum value of knapsack 
of weight u
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Base case: value(0) =  0



Subproblems

Let value(u) be the maximum value of knapsack 
of weight u

value(u) =   max {value(u − wi ) +  v i}
i : wi ≤w

Base case: value(0) =  0

This recurrence relation is transformed into
a recursive algorithm in a straightforward way



Recursive Algorithm
1  T  =  d i c t  ( )  
2
3 def  knapsack (w,  v ,  u ) :
4 i f  u  not  in  T :
5 T [  u ] =  0
6
7 for i in  range ( len (w ) ) :
8 i f  w[ i ] < =  u :
9 T [  u ] =  max (T[  u ] ,

10 knapsack (w,  v ,  u − w[ i ] )   +  v [ i ] ) 
11
12 r etur n  T [  u ]
13
14
15 p r i n t  ( knapsack (w=[  6 ,  3 ,  4 ,  2 ] ,
16 v = [  30 ,  14 ,  16 ,  9 ] ,  u =10) )



Recursive into Iterative

As usual, one can transform a recursive 
algorithm into an iterative one



Recursive into Iterative

As usual, one can transform a recursive 
algorithm into an iterative one

For this, we gradually fill in an array T :
T [u] =  value(u)



Recursive Algorithm

+  v [ i ] )

1 def  knapsack (W,  w,  v ) :
2 T  =   [ 0 ]  *  (W +  1 )
3
4 for   u  in  range ( 1 , W +   1 ) :
5 for i in  range ( len (w ) ) :
6 i f  w[ i ] < =  u :
7 T [  u ] =  max (T[  u ] ,  T [  u − w[ i ] ] 
8
9 r etur n   T[W]

10
11
12 p r i n t  ( knapsack (W=10 , w=[  6 ,  3 ,  4 ,  2 ] ,
13 v = [  30 ,  14 ,  16 , 9 ] ) )
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Example: W = 10

6

$30

3

$14

4

$16

2

$9

0 1 2 3 4 5 6 7 8 9 10

0 0 9 14 18 23 30 32 39 44 48

+30 +16 +14  +9



Subproblems Revisited

Another way of arriving at subproblems: 
optimizing brute force solution



Subproblems Revisited

Another way of arriving at subproblems: 
optimizing brute force solution

Populate a list of used items one by one



Brute Force: Knapsack with Repetitions

v , i te m s  +   [ i ] )  )

1 def  knapsack (W,  w,  v , i te m s ) :
2 weight =  sum(w[ i ] for i in  i te m s )
3 v a l u e =  sum( v [ i ] for i in  i te m s ) 
4
5 for i in  range ( len (w ) ) :
6 i f weight +  w[ i ] < =  W:
7 v a l u e =  max( value ,
8 knapsack (W,  w,
9

10 r etur n   v a l u e
11
12 p r i n t  ( knapsack (W=10 , w=[  6 ,  3 ,  4 ,  2 ] ,
13 v = [  30 ,  14 ,  16 ,  9 ] , i te m s = [  ] ) )



Subproblems

It remains to notice that the only important 
thing for extending the current set of items is 
the weight of this set



Subproblems

It remains to notice that the only important 
thing for extending the current set of items is 
the weight of this set

One then replaces items by their weight in the 
list of parameters



Outline
1 1: Longest Increasing Subsequence

1. : Warm-up
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4. : Subproblems Revisited

2 2: Edit Distance

1. : Algorithm
2. : Reconstructing a Solution
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1. : Chain Matrix Multiplication
2. : Summary



Without repetitions: 
one of each item

With repetitions: 
unlimited quantities



Knapsack without repetitions problem

Input:

Output:

Weights w0, .  .  .  ,  wn−1 and values
v0, .  .  .  ,  vn−1 of n items; total weight W 

(vi ’s, wi ’s, and W are non-negative 
integers).

The maximum value of items whose 
weight does not exceed W . Each item 
can be used at most once.



Same Subproblems?

wn−1 W
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Same Subproblems?

wn−1 W

wn−1 W − wn−1



Subproblems

wn−1

If the last item is taken into an optimal solution:

W

then what is left is an optimal solution for a 
knapsack of total weight W − wn−1 using items 
0, 1, .  .  .  ,  n − 2.



Subproblems

wn−1

If the last item is taken into an optimal solution:

W

then what is left is an optimal solution for a 
knapsack of total weight W − wn−1 using items 
0, 1, .  .  .  ,  n − 2.

If the last item is not used, then the whole 
knapsack must be filled in optimally with items 
0, 1, .  .  .  ,  n − 2.



Subproblems

For 0 ≤  u ≤  W and 0 ≤  i ≤  n, value(u, i ) is 
the maximum value achievable using a knapsack 
of weight u and the first i items.



Subproblems

For 0 ≤  u ≤  W and 0 ≤  i ≤  n, value(u, i ) is 
the maximum value achievable using a knapsack 
of weight u and the first i items.

Base case: value(u, 0) =  0, value(0, i ) =  0



Subproblems

For 0 ≤  u ≤  W and 0 ≤  i ≤  n, value(u, i ) is 
the maximum value achievable using a knapsack 
of weight u and the first i items.

Base case: value(u, 0) =  0, value(0, i ) =  0 

For i >  0, the item i − 1 is either used or not: 

value(u, i ) is equal to

max{value(u−wi−1, i−1)+vi−1, value(u, i−1)}



Recursive Algorithm

1 T  =  d i c t  ( )
2
3 def  knapsack  (w,  v ,  u ,  i )  :
4 i f  (  u ,  i )   not  i n T :
5 i f  i = =  0 :
6 T [  u ,  i ] =  0
7 e l s e :
8 T [  u ,  i ] =  knapsack  (w,  v ,  u ,  i − 1 )
9 i f  u > =  w[ i − 1 ] :

10 T [  u ,  i ] =  max(T[ u ,  i ] ,
11 knapsack  (w,  v ,  u − w[ i − 1 ] ,  i − 1 ) +  v [ i — 1 ]
12
13 r etur n  T [  u ,  i ]
14
15
16 p r i n t (  knapsack  ( w= [  6 ,  3 ,  4 ,  2 ] ,
17 v = [  30 ,  14 ,  16 ,  9 ] ,  u=10  ,  i = 4 ) )



Iterative Algorithm

range (W +  1 )  ]

f o r  u  i n  range (W +  1 )  : 
T [  u ] [ 0 ] =  0

f o r  i  i n  range (  1 ,  len (w) +  1 )  :
f o r  u  i n  range (W +  1 )  : 

T [  u ] [ i ] =  T [  u ] [ i − 1 ]
i f  u > =  w[ i − 1 ] :

T [  u ] [ i ] =  max(T[ u ] [ i ] ,
T [  u − w[ i − 1 ] ] [ i − 1 ] +  v [ i − 1 ] )

r etur n  T[W] [ len (w ) ]

1 def  knapsack  (W,  w,  v )  :
2 T  =  [ [ None ]  * (  len (w) +  1 )   f o r _  i n
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 p r i n t (  knapsack  (W=10 , w=[  6 ,  3 ,  4 ,  2 ] ,
18 v = [  30 ,  14 ,  16 ,  9 ] )  )



Analysis

Running time: O(nW )
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Running time: O(nW )

Space: O(nW )



Analysis

Running time: O(nW )

Space: O(nW )

Space can be improved to O(W ) in the iterative 
version: instead of storing the whole table, store 
the current column and the previous one



Reconstructing a Solution

As it usually happens, an optimal solution can 
be unwound by analyzing the computed 
solutions to subproblems
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is not taken. Update i to i − 1



Reconstructing a Solution

As it usually happens, an optimal solution can 
be unwound by analyzing the computed 
solutions to subproblems

Start with u =  W , i =  n

If value(u, i ) =  value(u, i − 1), then item i − 1 
is not taken. Update i to i − 1

Otherwise
value(u, i ) =  value(u − wi−1, i − 1) +  vi−1 and 
the item i − i is taken. Update i to i − 1 and u 

to u − wi−1



Subproblems Revisited

How to implement a brute force solution for the 
knapsack without repetitions problem?



Subproblems Revisited

How to implement a brute force solution for the 
knapsack without repetitions problem?

Process items one by one. For each item, either 
take into a bag or not
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Recursive vs Iterative

If all subproblems must be solved then an 
iterative algorithm is usually faster since it has 
no recursion overhead



Recursive vs Iterative

If all subproblems must be solved then an 
iterative algorithm is usually faster since it has 
no recursion overhead

There are cases however when one does not 
need to solve all subproblems and the knapsack 
problem is a good example: assume that W and 
all wi ’s are multiples of 100; then value(w ) is 
not needed if w is not divisible by 100



Polynomial Time?
The running time O(nW ) is not polynomial 
since the input size is proportional to log W , but 
not W
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W =  10 345 970 345 617 824 751

(twentу digits only!) the algorithm needs 
roughly 1020 basic operations



Polynomial Time?
The running time O(nW ) is not polynomial 
since the input size is proportional to log W , but 
not W

In other words, the running time is O(n2log W ). 

E.g., for

W =  10 345 970 345 617 824 751

(twentу digits only!) the algorithm needs 
roughly 1020 basic operations

Solving the knapsack problem in truly 
polynomial time is the essence of the P  vs NP 
problem, the most important open problem in 
Computer Science (with a bounty of $1M)



Fractional Knapsack

The time complexity of the Fractional Knapsack 
problem is O(N log N). 
This complexity arises because the problem is 
typically solved using a greedy algorithm, which 
involves sorting the items based on their value-to-
weight ratio and then adding them to the knapsack in 
this sorted order until the knapsack's capacity is 
reached or all items are considered
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Chain matrix multiplication

Input:

Output:

Chain of n matrices A0, .  .  .  ,  An−1 to be 
multiplied.

An order of multiplication minimizing the 
total cost of multiplication.



Clarifications

Denote the sizes of matrices A0, .  .  .  ,  An−1 by

m0 ×  m1, m1 ×  m2, .  .  .  ,  mn−1 ×  mn

respectively. I.e., the size of Ai is mi ×  mi +1
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Clarifications

Denote the sizes of matrices A0, . . . , An−1 by

m0 ×  m1, m1 ×  m2, . . . , mn−1 ×  mn

respectively. I.e., the size of Ai is mi ×  mi +1 

Matrix multiplication is not commutative (in 

general, A ×  B ≠  B ×  A), but it is associative:

A ×  (B ×  C ) = (A ×  B ) ×  C

Thus A ×  B ×  C ×  D can be computed, e.g., as
(A ×  B ) ×  (C ×  D) or (A ×  (B ×  C )) ×  D

The cost of multiplying two matrices of size
p ×  q and q ×  r is pqr



Example: A ×  ((B ×  C ) ×  D)

A B C
50 ×  20  20 ×  1 1 ×  10

D
10 ×  100

× × ×

cost:



Example: A ×  ((B ×  C ) ×  D)

A
50 ×  20

B ×  C
20 ×  10

D
10 ×  100

× ×

cost: 20 · 1 · 10



Example: A ×  ((B ×  C ) ×  D)

A
50 ×  20

B ×  C ×  D
20 ×  100

×

cost: 20 · 1 · 10 +  20 · 10 · 100



Example: A ×  ((B ×  C ) ×  D)

A ×  B ×  C ×  D
50 ×  100

cost: 20 · 1 · 10 +  20 · 10 · 100 +  50 · 20 · 100 =  120 200
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A B C
50 ×  20  20 ×  1 1 ×  10

D
10 ×  100

× × ×

cost:



Example: (A ×  B) ×  (C ×  D)

A ×  B
50 ×  1

C
1 ×  10

D
10 ×  100

× ×

cost: 50 · 20 · 1



Example: (A ×  B) ×  (C ×  D)

A ×  B
50 ×  1

C ×  D
1 ×  100

×

cost: 50 · 20 · 1 +  1 · 10 · 100



Example: (A ×  B) ×  (C ×  D)

A ×  B ×  C ×  D
50 ×  100

cost: 50 · 20 · 1 +  1 · 10 · 100 +  50 · 1 · 100 =  7 000



Order as a Full Binary Tree

D

C

A B

((A ×  B) ×  C ) ×  

D

A

D

B C

A ×  ((B ×  C ) ×  D)

D

A

B C

(A ×  (B ×  C )) ×  D



Analyzing an Optimal Tree

A0, . . . , Ai−1
Ai ,  .  .  .  ,  Aj−1 Ak ,  .  .  .  ,  An−1

Aj ,  .  .  .  ,  Ak−1

each subtree computes
the product of Ap ,  .  .  .  ,  Aq for some p ≤  q



Subproblems

Let M( i ,  j )  be the minimum cost of computing
Ai ×  · · · ×  Aj−1



Subproblems

Let M( i ,  j )  be the minimum cost of computing
Ai ×  · · · ×  Aj−1

Then

M( i ,  j )  = min {M( i  ,  k ) + M(k ,  j )  + mi · 
mk · m j}

i<k<j



Subproblems

Let M( i ,  j )  be the minimum cost of computing
Ai ×  · · · ×  Aj−1

Then

M( i ,  j )  = min  {M( i  ,  k ) + M(k ,  j )  + mi · mk 

· m j}
i<k<j

Base case: M( i ,  i +  1) = 0



Recursive Algorithm



Converting to an Iterative Algorithm

We want to solve subproblems going from 
smaller size subproblems to larger size ones

The size is the number of matrices needed to be 
multiplied: j − i

A possible order:



Example

The matrices have size 4 x 10, 10 x 3, 3 x 12, 12 x 20, 20 x 7



Example

M [3, 5] = 1140

The matrices have size 4 x 10, 10 x 3, 3 x 12, 12 x 20, 20 x 7



Iterative Algorithm



Final Remarks

Running time: O(n3)



Final Remarks

Running time: O(n3)

To unwind a solution, go from the cell (0, n) to 
a cell (i ,  i +  1)



Final Remarks

Running time: O(n3)

To unwind a solution, go from the cell (0, n) to 
a cell (i ,  i +  1)

Brute force search: recursively enumerate all 
possible trees
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Step 1 (the most important step)

Define subproblems and write down a 
recurrence relation (with a base case)

either by analyzing the structure 
of an optimal solution, or

by optimizing a brute force 
solution



Subproblems: Review

1 Longest increasing subsequence: LIS (i ) is the 
length of longest common subsequence ending 
at element A[i ]

2  Edit distance: ED(i ,  j )  is the edit distance 
between prefixes of length i and j

3  Knapsack: K (w ) is the optimal value of 
a knapsack of total weight w

4  Chain matrix multiplication M( i ,  j )  is the 
optimal cost of multiplying matrices through i 
to j − 1



Step 2

Convert a recurrence relation into a 
recursive algorithm:

store a solution to each 
subproblem in a table

before solving a subproblem check 
whether its solution is already 
stored in the table



Step 3

Convert a recursive algorithm into an 
iterative algorithm:

initialize the table

go from smaller subproblems to 
larger ones

specify an order of subproblems



Step 4

Prove an upper bound on the running 
time. Usually the product of the 
number of subproblems and the time 
needed to solve a subproblem is a 
reasonable estimate.



Step 5

Uncover a solution



Step 6

Exploit the regular structure of the 
table to check whether space can be 
saved



Recursive vs Iterative

Advantages of iterative approach:
No recursion overhead
May allow saving space by exploiting a regular 
structure of the table

Advantages of recursive approach:
May be faster if not all the subproblems need to be 
solved
An order on subproblems is implicit
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