Analysis and Design of
Algorithms

Greedy Algorithms (Part 2):

Counting Money and Huffman Compression

Instructor: Morteza Zakeri

Slide by: Hossein Rahmani
Modified by Morteza Zakeri

g— (‘:E
COSb shows vertex .
1D operasor el | g

w P° oooooooooo
mebhods case e

@ erabor®
. arrag ohject; e bree
e blme random | ' §

''''''' O (Clline Qpnvabe
rab’

mdﬂd
! nex

N
8
& ‘

Greed 1s SO destructive.

[t destroys everythmg.
L

Eartha Kitt
y i
g ¥4 \
" ‘
o » @ cuoterancy I\~ Y
b ! &
v \
i
- A
3
&

| THINK GREED
SOMETIMES GETS
THE BEST OF
EVERYBODY.

Alan Haft

Optimization Problems

* For most optimization problems you want to
find, not just a solution, but the best solution.

* A greedy algorithm sometimes works well for
optimization problems. It works in phases. At
each phase:

— You take the best you can get right now, without
regard for future consequences.

— You hope that by choosing a local optimum at
each step, you will end up at a global optimum.

e
Hill Climbing - Some Problems

:'-I:'-ju:n:l:iwiI function global madmum

shoulder

Tocal T

"flat" lecal masximum

stale space
current

shiale

Example: Counting Money

* Suppose you want to count out a certain amount of
money, using the fewest possible bills and coins

* A greedy algorithm to do this would be:

At each step, take the largest possible bill or coin that does
not overshoot

— Example: To make $6.39, you can choose:
a S5 bill

a S1 bill, to make S6

e a25¢ coin, to make $6.25

A 10¢ coin, to make $6.35

e four 1¢ coins, to make $6.39

* For US money, the greedy algorithm always gives the
optimum solution

Greedy Algorithm Failure

* Insome (fictional) monetary system, “krons”

 comein 1 kron, 7 kron, and 10 kron coins

. UsinF a greedy algorithm to count out 15 krons, you
would get

— A 10 kron piece

— Five 1 kron pieces, for a total of 15 krons

— This requires six coins

* A better solution would be to use two 7 kron
pieces and one 1 kron piece

— This only requires three coins

* The greedy algorithm results in a solution, but NOT
in an optimal solution

A Scheduling Problem

You have to run nine jobs, with running times of 3,5, 6, 10, 11, 14, 15, 18,
and 20 minutes.

You have three processors on which you can run these jobs.

You decide to do the longest-running jobs first, on whatever processor is
available.

P1 20 10 3
P2
18 11 6
P3
15 14 5

* Time to completion: 18 + 11 + 6 = 35 minutes
* This solutionisn’t bad, but we might be able to do better

Another Approach

 What would be the result if you ran the shortest job first?
e Again, the running times are 3, 5, 6, 10, 11, 14, 15, 18, and 20 minutes

P13 10 15

P2
P3

6 14 20

 That wasn’t such a good idea; time to completion is now
6 + 14 + 20 = 40 minutes

* Note, however, that the greedy algorithm itself is fast

— All we had to do at each stage was pick the minimum or maximum

An Optimum Solution

e Better solutions do exist:

P1 20 14
P2
18 11 5
P3
15 10 6

e How do we find such a solution?

— One way: Try all possible assignments of jobs to processors
— Unfortunately, this approach can take exponential time

Compression

e Definition
— Reduce size of data
(number of bits needed to represent data)

 Benefits

— Reduce storage needed

— Reduce transmission cost / bandwidth

10

Sources of Compressibility

e Redundancy

— Recognize repeating patterns

— Exploit using

* Dictionary

e Variable length encoding

* Human perception
— Less sensitive to some information

— Can discard less important data

1

Types of Compression

e Lossless

— Preserves all information

— Exploits redundancy in data
— Applied to general data

* Lossy

— May lose some information

— Exploits redundancy & human perception

— Applied to audio, image, video

12

Effectiveness of Compression

Metrics
— Bits per byte (8 bits)
e 2 bits / byte = % original size
e 8 bits / byte = no compression

— Percentage
e 75% compression = % original size

13

Effectiveness of Compression

* Depends on data

— Random data = hard
 Example: 1001110100 = ?

— Organized data = easy
* Example: 1111111111 = 1x10

e Corollary

— No universally best compression algorithm

14

Effectiveness of Compression

* Lossless Compression is not always possible

— |f compression is always possible (alternative
view)
 Compress file (reduce size by 1 bit)
* Recompress output
* Repeat (until we can store data with 0O bits)

15

Lossless Compression Techniques

e LZW (Lempel-Ziv-Welch) compression

— Build pattern dictionary

— Replace patterns with index into dictionary

* Run length encoding

— Find & compress repetitive sequences

e Huffman codes

— Use variable length codes based on frequency

16

Huffman Code
* Approach

— Variable length encoding of symbols

— Exploit statistical frequency of symbols

— Efficient when symbol probabilities vary widely
* Principle

— Use fewer bits to represent frequent symbols

— Use more bits to represent infrequent symbols
K
AL B s

17

Huffman Code Example

Symbol A B C D
Frequency 13% | 25% | 50% | 12%
Original 00 | 01 | 10 | 11
Encoding |5 pits | 2 bits | 2 bits | 2 bits
Huffman 110 10 0 111
Encoding | 3 pits | 2 bits | 1 bit | 3 bits

* Expected size

— Original = 1/8x2 + 1/4x2 + 1/2x2 + 1/8x2 = 2 bits / symbol

— Huffman = 1/8x3 + 1/4x2 + 1/2x1 + 1/8%x3 = 1.75 bits / symbol

18

Huffman Code Data Structures

D A

* Binary (Huffman) tree

— Represents Huffman code ‘ ,
— Edge = code (O or 1) 1\ /o &
— Leaf = symbol ‘ ‘

C
— Path to leaf = encoding 1\ Jo
— Example ‘
° A — 11110”’ B — HlOH’ C — IIOH 1 \ f 0

Huffman Code Algorithm Overview

* Encoding

— Calculate frequency of symbols in file

— Create binary tree representing “best” encoding

— Use binary tree to encode compressed file

* For each symbol, output path from root to leaf
* Size of encoding = length of path

— Save binary tree

20

Huffman Code — Creating Tree

e Algorithm

— Place each symbol in leaf
* Weight of leaf = symbol frequency

— Select two trees L and R (initially leafs)
 Such that L, R have lowest frequencies in tree

— Create new (internal) node
e Leftchild=1L
e Right child = R
* New frequency = frequency(L) + frequency(R)

— Repeat until all nodes merged into one tree

21

Huffman Tree Construction 1

A C E H |

Huffman Tree Construction 2

C E I

A H

_/

Huffman Tree Construction 3

o0 O O
\ /
o 0O
\ /
o

Huffman Tree Construction 4

A H

0. 00
o 0 -
\ /

o

Huffman Tree Construction 5

A H

1\ fO C E I

A\ fo 1 \/o

N

>0 m

01
00
10
111
110

Huffman Coding Example

E = 01

 Huffman code | _ 00
C = 10
A = 111
H = 110

* |nput

— ACE
* Output

—(111)(10)(01) = 1111001

Huffman Code Algorithm Overview

* Decoding
— Read compressed file & binary tree

— Use binary tree to decode file

* Follow path from root to leaf

Huffman Decoding 1

A H

° ° 1111001

1\ fO C E I
00 O

A\ fo 1 \/o

N~

Huffman Decoding 2

A H

° ° 1111001

1\ fO C E I
00 O

A\ fo 1 _/o

N

Huffman Decoding 3

A H

1111001
0
000 0 .
A S0 1\ /o
l\/éo

Huffman Decoding 4

A H

1111001
0
000 0 .
A\ S0 1\ /o
l\/éo

Huffman Decoding 5

A H

1111001

0 .

000 0

A\ o 1\ /o
I\/éo

Huffman Decoding 6

A H

1111001

0 .

000 0

A\ o 1\ /o
l\/éo

Huffman Decoding 7

A H

1111001
0 .

0 00 0 . -
A\ o 1\ /o
l\/éo

Huffman Code Properties

* Prefix code
— No code is a prefix of another code

— Example
 Huffman(“l”) = 00
e Huffman(“X”) = 001 // notlegal prefix code

— Can stop as soon as complete code found
— No need for end-of-code marker

* Nondeterministic
— Multiple Huffman coding possible for same input
— If more than two trees with same minimal weight

36

Huffman Code Properties

* Greedy algorithm
— Chooses best local solution at each step
— Combines 2 trees with lowest frequency
* Still yields overall best solution
— Optimal prefix code
— Based on statistical frequency

e Better compression possible (depends on
data)

— Using other approaches (e.g., pattern dictionary)

37

Huffman Code Construction

*Character count in text.
*Character Encoding?

125

93

80

76

73

71

65

61

55

41

40

31

27

38

Huffman Code Construction

Huffman Code Construction

Huffman Code Construction

A

40 41

Huffman Code Construction

: 81 : 113

40 41 58 55

31 27

Huffman Code Construction

: 81 : 126 113

40 41 61 65 58 55

31 27

Char Fregq

Huffman Code Construction

: 81 : 126 144 113

40 41 61 65 71 73 58 55

31 27

Huffman Code Construction

156

80 76 ’/ 81 \1 126 144 113

40 41 61 65 71 73 58 55

31 27

L

Huffman Code Construction i

144
126
E | 125
113

T | 93
81

:156\‘ 174
80 76 81 93 /126 \ /144\ 113
40 41 61 65 71 73 58 55
31 27
s

L

Huffman Code Construction &L

156
:156: 174
80 76 81 93 /126 \ /144\
40 41 61 65 71 73

144
126

E | 125
113

Huffman Code Construction 2558

174
:156 : 174 270
80 76 81 93 126 144
40 41 61 65 71 73

156

144
126

Huffman Code Construction o

270 |
238

174
156

270

126 144

61 65 71 73

Huffman Code Construction 335305

270
238
508
E
126 144 125 113
R S N I H
61 65 71 73 58 55
C V]

31 27

50

Huffman Code Construction

156

76

330

40

81

174

41

93

838

126

61

65

270

71

144

508

73

-l

508
330
238
E
125 113
H
58 55
C U
31 27

51

Huffman Code Construction

Char Freq Fixed Huff
E 125 0000 110
T 93 0001 011
A 80 0010 000
) 76 0011 001
I 73 0100 1011
N 71 0101 1010
S 65 0110 1001
R 61 0111 1000
H 55 1000 1111
L 41 1001 0101
D 40 1010 0100
C 31 1011 11100
U 27 1100 11101

Total 838 4.00 3.62

52

