Analysis and Design of
Algorithms

Recurrence Relations

Instructor: Morteza Zakeri

Modified and eXtended version of Slides from George Bebis
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Recurrence relations

* Many counting problems can be solved with
recurrence relations

* Example:
— The number of bacteria doubles every 2 hours. If a colony
begins with 5 bacteria, how many will be present in n hours!?

* Solution:

— Let a,=2a_, where n is a positive integer with a,=5
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Recurrence relations

* A recurrence relation for the sequence {a_} is an
equation that expresses an in terms of | or more of
the previous terms of the sequence,i.e., a2, ...,a, |,

for all integers n with n=n, where n, is a nonnegative
integer

* A sequence is called a solution of a recurrence
relation if its terms satisfy the recurrence relation



Example

* Let {a } be a sequence that satisfies the recurrence
relationa , =a ,—a , forn =12 3,4, ... and suppose
that a, = 3 and a, = 5, what are a, and ay!

* Using the recurrence relation, a2, = a;-a;=5-3 =2
anda;=a,-a,=2-5=-3



Example

* Determine whether the sequence {a_}, where a_=3n
for every nonnegative integer n, is a solution of the
recurrence relation a_ =2a_, —a,, for n=2, 3,4, ...

— Suppose a, = 3n for every nonnegative integer n.
— Then for n 2 2, we have 2a -1-a -2 = 2(3(n-1))-3(n-2) = 3n
= a,.

— Thus, {an} where a_ = 3n is a solution for the recurrence
relation



Modeling with recurrence relations

 Compound interest: Suppose that a person deposits
$10,000 in a savings account at a bank yielding | 1%
per year with interest compounded annually. How
much will it be in the account after 30 years!?

* Let P, denote the amount in the account after n
years.

* The amount after n years equals the amount in the
amount after n-| years plus interest for the n-th year,
we see the sequence {P.} has the recurrence
relation

P.=P +0.1IP_,=(l.11)P_,



Modeling with recurrence relations

* The initial condition P,=10,000, thus
« P, =(l.11)P,

« P,=(L.11)P, = (l.11)?P,

« P;=(1.11)P,= (1.11)3P,

« P =(l.1DHP. = (l.11)"P,
* We can use mathematical induction to establish its
validity



Modeling with recurrence relations

We can use mathematical induction to establish its
validity

Assume P _=(1.11)"10,000.

Then from the recurrence relation and the induction
hypothesis

" P = (1P,

= = (1.11)(1.11)"10,000 = (I.11)™'10,000

= N =30,P;,=(1.11)3°10,000 = 228,922.97



Recursion and recurrence

* A recursive algorithm provides the solution of a
problem of size n in terms of the solutions of one or
more instances of the same problem of smaller size

* When we analyze the complexity of a recursive
algorithm, we obtain a recurrence relation that
expresses the number of operations required to
solve a problem of size n in terms of the number of
operations required to solve the problem for one or
more instance of smaller size.




Recurrences and Running Time

An equation or inequality that describes a function in terms of

its value on smaller inputs.
T(n) = T(n-1) + n
Recurrences arise when an algorithm contains recursive calls

to itself.

What is the actual running time of the algorithm!?

Need to solve the recurrence

— Find an explicit formula of the expression

— Bound the recurrence by an expression that involves n
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Example Recurrences

T(n) = T(n-1) + n O(n?)
— Recursive algorithm that loops through the input to
eliminate one item

T(n) = T(n/2) + c O(Ign)
— Recursive algorithm that halves the input in one step
T(n) = T(n/2) + n O(n)

— Recursive algorithm that halves the input but must
examine every item in the input

T(n) = 2T(n/2) + 1 O(n)

— Recursive algorithm that splits the input into 2 halves and
does a constant amount of other work
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Recurrent Algorithms
BINARY-SEARCH

e for an ordered array A, finds if X is in the array A[lo...hi]

Alg.: BINARY-SEARCH (A, lo, hi, x)

if (lo > hi) 213|5|7]9]10
return FALSE
mid < | (lo+hi)/2 IT L mid
if x = A[mid] ?
return TRUE

if (x <A[mid] )
BINARY-SEARCH (A, lo, mid-1, x)
if (x >A[mid] )
BINARY-SEARCH (A, mid+1, hi, x)



- A[8]={l,2,3,4,5,7,9, 11}

— lo=1|

2

Example

hi=8 x=7
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mid=4,lo=5,hi =8

mid = 6, A[mid] = x
Found!

13



Another Example

« A[8]={l,2,3,4,57,9 11}
—lo=1 hi=8 x=6

1 2 3 4 5 6 7 8

1[2]3[(a)5]7]9]11] ma=410=5ni=e

4 low t high

1[2]3]4]5][7)9]11] mid=6Ae=710=5"ni=5
f low f high

112|314 719 111] mid=5A5]1=51l0=6,hi=5
1 NOT FOUND!

112|314 |5]7]9 |11
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Analysis of BINARY-SEARCH

Alg.: BINARY-SEARCH (A, lo, hi, x)

if (|O > hi) constant time: ¢,
return FALSE

mid < [ (lo+hi)/2 « constant time: ¢,

if x = A[mid]

constant time: c,

return TRUE
if (X< A[mid])

BINARY-SEARCH (A, lo, mid-1, X) «— same problem of size n/2
if (x> A[mid])

BINARY-SEARCH (A, mid+1, hi, X) <«— same problem of size n/2

+ T(n)=c+ T(n/2)

- T(n): running time for an array of size n
15



Types of recurrence relations

e Linear vs. non-linear

— A recurrence relation for a sequence S(n) is linear if the
earlier values of S appearing in the definition occur only to
the first power.

S(n) = fi(n)S(n —1) + fa(n)S(n —2) + - + fr(n)S(n — k) + g(n)

— e.g, linear an = Nap—1 — 1
nonlinear a, =1/(1+an—1)
e Constant coefficient vs. variable coefficients

— The recurrence relation has constant coefficients is the f.s
are all constants.

—eg, a,=na, 1+ (n—1)a, »+1
16



Types of recurrence relations

* First order vs. higher order
— It is first-order if the n® term depends only on term n—1.
— e.g, second order recurrence relations:

linear an, — Qn_1 + 2a,_9
nonlinear An = Ap—10p—2 + /Ap—2

* Homogeneous vs. non-homogeneous

— Recurrence relation is homogeneous if g(n)=0 for all n.

 Linear first-order recurrence relations with
constant coefficients have the form:

S(n) = cS(n-1) + g(n)
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Example of recurrence relations

* These are some examples of well-known linear
recurrence equations

Recurrence relations Initial values Solutions
Fn = Fn-1 + Fpn-2 aj =az2 =1 Fibonacci number
Fn = Fn-1 + Fpn-2 aj=1,a2=3 Lucas Number
Fn = Fn-2 + Fn-3 ai =azp =a3z =1 Padovan sequence

‘n
3
I

= 2Fn-1 + Fp-2 a1 =0,ax=1 Pell number
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Solving recurrences relations

From mathematical induction

Recurrence relation
A, = C1An_1+ CQp_o + -+ CAy_x
A sequence satisfying the recurrence relation
in the definition is uniquely defined by this
recurrence relation and the k initial conditions
ag = Co,a1 = Cq, ...,a05_1 = C_4

We can often solve a recurrence relation in a manner
analogous to solving a differential equations.
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Methods for Solving Recurrences

 |teration method

— Most simple method

* Characteristic equation

— Mostly for Linear Recurrence Relations

e Substitution method

— Mostly for Linear Recurrence Relations

e Recursion tree method

— Mostly for Divide and Conquer Recurrence Relations

e Master theorem method

- : 20
— Mostly for Divide and Conquer Recurrence Relations



Methods for Solving Recurrences

Iteration method
Characteristic equation
Substitution method
Recursion tree method

Master theorem method
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The Iteration Method

e Convert the recurrence into a summation and try to
bound it using known series
— lterate the recurrence until the initial condition is reached.

— Use back-substitution to express the recurrence in terms

of n and the initial (boundary) condition.
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The Iteration Method

T(n) = ¢ + T(n/2)

T(n) =c+ T(n/2) T(n/2) = ¢ + T(n/4)
=c+c+ T(n/4) T(n/4) = c + T(n/8)
=c+c+c+ T(n/8)

Assume n = 2K
T(n) = C+Cc+..+CH T(1)
k T?;nes
= clgn + T(1)
= O(lgn)

23



T(n)

Ilteration Method — Example

T(n) = n + 2T(n/2) Assume: n = 2k
=n+2T(n/2) T(n/2) = n/2 + 2T(n/4)
=n+2(n/2 + 2T(n/4))
=n+n+4T(n/4)
=n+n+4(n/4 +2T(n/8))
=nh+n+n+8T(n/8)

. =in+ 2T(n/2)

= kn + 2kT(1)
= nign + nT(1) = O(nlgn)

24



Methods for Solving Recurrences

Iteration method
Characteristic equation
Substitution method
Recursion tree method

Master theorem method

25



The characteristic equation method

* Linear homogenous recurrence relations with

constant coefficients

Look for solutions of the form a,, = r™ where

r IS @ hon-zero constant
Sincea,, = c1ay_1t+ 0>+ "+ CrAp_p
SO, 1™ = ™"l T2 e TR
Divide both sides by r™~ %,

rk— crf Tl —crk 2 —i— =0

The sequence {a,,} with a,, = r™ is a solution
if and only if 7 is a solution of this characteristic equation

26



Theorem 1

* Let ¢ and ¢, be real numbers. Suppose that
r? —¢;r — ¢, = 0 has two distinct roots 7y

and , . Then the sequence {a, } is a solution
of the recurrence relation

Ap = C10p—1 T C2 Ap—

if and only if

a, = a1, +a,rn" forn=0,1,2,... where
a4 and @, are constants

27



Example

Find solution for a,, = a,,_4 + 2a,,_, where
aO — 2, al =7

The characteristic equationisr® —r —2 = 0,
and therootsarer; =2andr, = —1

Hence a,, = a;2" + a,(—1)"

Thus,ay =a; +a, =2,a1 =201 —ay =7
So,a;1 = 3,a, = —1

Hence, a, =3 - 2" —(—=1)"

28



Example: Fibonacci numbers

* Recall fy = fp1 + fn—2and fo =0,f; =1
* The roots of the characteristic equationr? —r—1=0

are r; = (1+\/_)/2 andr, = (1—\/5)/2.Thus
1+\/_ g (L
fan = as1( ) as

* fo=a;+ta, =0, f; =a (1+2\/§) + a, (1_2\/5)

¢ Thusa]_:]./\/gaz:_l/\/g

1+V5., 1 1-V5.p,
\/—(2)_\/5(2)

* Consequently, f,, =

29



Proof: aymy™ + a,r," = cia,—1 + coa,,—->

» Show if a,, = ay7y™ + a,1,™ (and 12
¢, — ¢, = 0) then {a, } is the solution of the
recurrence relation a,, = c;a,,_1 + ¢,a,,_»

¢ C1lp_1 F Capn_o=Cy (@ ) +
Colagr ™%+ apry V%) =
oY SR (Y PR o U (P TN
QT AT A a VA Ay M ap " = ay,
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Proof: cia,,—1 + coa,_ > = a;ry™ + a,r,"

Show if a,, = cya,_q + cya,,_, (and r2-c,r — ¢, =
0) thena, = ayry" + a,r," for some a; and a,
From initial conditions: ay, = Cy=a1 + a,
a, = C1=a’17”1 + A, 1>

C1—CoT _ Cor—Cq

It follows, a = A, = whenr; # r
o r=ry 2 r-=n 1 2

Both {a,} and {a;r;"" + a,7,"} are solutions

As there is a unique solution of a linear homogenous
recurrence relation of degree 2 with the same initial
conditions, these two must be the same

31



Methods for Solving Recurrences

Iteration method

Characteristic equation
Substitution method
Recursion tree method

Master theorem method

32



The substitution method

|. Guess a solution

2. Use induction to prove that the
solution works




Substitution method

e  QGuess a solution

- T(n) = O(g(n))
— Induction goal: apply the definition of the asymptotic notation
T(n) < d g(n), for some d > 0 and n > n,
—  Induction hypothesis: T(k) < d g(k) for all k<n (strong induction)
* Prove the induction goal

— Use the induction hypothesis to find some values of the constants

d and n, for which the induction goal holds

34



Example: Binary Search

T(n) = ¢ + T(n/2)
Guess: T(n) = O(lgn)

— Induction goal: T(n) < d Ign, for some d and n > n,
— Induction hypothesis: T(n/2) < d Ig(n/2)

Proof of induction goal:
T(n) = T(n/2) + c<d lg(n/2) + ¢
=dlIgn-d+c<dlgn
it —~-d+c<0,d>c

Base case?

35



Example 2

T(n) = T(n-1) + n

Guess: T(n) = O(n?)

Induction goal: T(n) < ¢ h?, for some c and n 2 n,

Induction hypothesis: T(n-1) < ¢(n-1)? for all k < n

Proof of induction goal:

T(n)=T(n-1)+n<c (n-1)2 +n

=cn?-(2chn-c-n)<cn?
if: 2cn-c-n20<c2n/(2n-1)<=c21/(2 - 1/n)

Forn21=2-1/n21= anyc 21 will work

36



Example 3

T(n) = 2T(n/2) + n
Guess: T(n) = O(nign)
— Induction goal: T(n) < cn Ign, for some ¢ and n > n,
— Induction hypothesis: T(n/2) < cn/2 Ig(n/2)

Proof of induction goal:
T(n) = 2T(n/2) + n< 2c (n/2)lg(n/2) + n
=chlgn-cn+n<cnlign
if: -cn+n<0=c21

Base case!?

37



Changing variables

T(n)=2T@n ) + Ign
— Rename:m = Ign = n = 2m
T (2m) = 2T(2™2) + m
— Rename: S(m) = T(2™)
S(m) = 25(m/2) + m = S(m) = O(mlgm)
(demonstrated before)
T(n) = T(2™) = S(m) = O(m.Igm)=0O(Ign.Iglg(n))
|dea: transform the recurrence to one that you have

seen before
38



Methods for Solving Recurrences

Iteration method
Characteristic equation
Substitution method
Recursion tree method

Master theorem method
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The recursion-tree method

Convert the recurrence into a tree:

Each node represents the cost incurred at various levels

of recursion

Sum up the costs of all levels

Used to “guess” a solution for the recurrence

40



Example 1

W(n) = 2W(n/ 2) + n2 f ﬁ_

1
| height=lgn 5 —=m------- =
1
/\ | /\
| ) ;)
1

Win'2)y  Win'2) (n/2)” (n/2)" A“Tz]h UIR} 112 n
5 A

RAAA

|
|
|
|
|
|
1 gl 4 : :
W Wad)  Wad)  Wad | w2 in'4)= in'4)< —= 140"
|
|
|

Win/d ) =2Win/8-+n/4) z

*  Subproblem size at level i is: n/2' PWOOWW() WIOWWD (2,

«  Subproblem size hits | when | =n/2i =i = Ign
«  Cost of the problem at level i = (n/27)>  No. of nodes at level i = 2!

 Total cost: ign-12 gn-1/ 1 1
W (n) = Z—i+2'g”W(1):nzz(—j +n< nZZ( ) +0(n) =n° +0(n) =2n°
2 o\ 2 1—%

i=0

= W(n) = O(n?)
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Example 2

E.g.: T(n) = 3T(n/4)+cn2

T(n) cn cn?
T TE TE) c(2)? c(4)? c (2

/

TG TG TG TG TG T TH) TH) T ()
e  Subproblem size at level i is: n/4
«  Subproblem size hits 1 when 1 =n/4' = i = logyn
« Cost of a node at level i = c(n/4/)2
«  Number of nodes at level i = 3' = last level has 3/°9," = nlog,3 nodes
« Total cost:

T(n)= Iogfll(%jlcnz +®(n'°g43)s i(lg j cn +®( 1003 )= iscn2 +®(n'°g43): O(n?)
1

i=0 i=0 _
16 42

= T(n) = O(n?)



Example 2 - Substitution

T(n) = 3T(n/4) + cn?
Guess: T(n) = O(n3)
— Induction goal: T(n) < dn?, for some d and n 2 n,
— Induction hypothesis: T(n/4) < d (n/4)2

Proof of induction goal:
T(n) = 3T(n/4) + cn?
< 3d (n/4)2 + cn?
= (3/16) d n? + cn?
<dn? if.d > (16/13)c

Therefore: T(n) = O(n?)
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Example 3 (simpler proof)

W(n) = W(n/3) + W(2n/3) + n /\ ————————— -
- The longest path from the root to ﬂ‘“‘“ ‘2‘""3"’\} n
a Ieaf IS. (n/9) (2n/9) (2n/9) (4n/9) .
h—(2/3)n > (2/3)2n—> ... > 1 /\ /\ /\ /\
e  Subproblem size hits 1 when '.
V\l(l ' : . =n
1=(2/3)n < i=logs,,n CUR }_ .
« Cost of the problem at level i = n W) '
« Total cost: & e
Ilgn
W(n)<n+n+...=n(log,, n) = ) =0O(nlgn)
Ig 5

= W(n) = O(nign) 44



Example 3

W(n) = W(n/3) + W(2n/3) + n /\ ————————— -
 The longest path from the root to ﬂ‘“” ‘2“'3’\:} n

a Ieaf IS. (n/9) (2n/9) (2n/9) 4n/ .

h—(2/3)n > (2/3)2n—> ... > 1 /\ /\ /\ /\
*  Subproblem size hits 1 when )

w(l) ‘ - : -

1= (2/3) n< |—|093/2n W(l) Wil S ~jn
« Cost of the problem at level i =n W)
 Total cost: . e

Wn)<n+n+..= > n+20%"W(1) <
i=0
logs/, N
<n ?Z;‘ 1+n"%2% =nlog,,,n+0(n) =n Ig%;lz +0(n) = |93/2n lgn+0(n)

= W(n) = O(nlgn) 45



Example 3 - Substitution

W(n) = W(n/3) + W(2n/3) + O(n)
* Guess: W(n) = O(nign)
— Induction goal: W(n) < dnlgn, for some d and n > n,

— Induction hypothesis: W(k) < d kilgk  for any K < n
(n/3, 2n/3)

* Proof of induction goal:
Try it out as an exercisell
* T(n) = O(nign)
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Methods for Solving Recurrences

Iteration method
Characteristic equation
Substitution method
Recursion tree method

Master (theorem) method
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Master’'s method

* “Cookbook” for solving recurrences of the form:
n
T(n)= aT(Ej + f(n)

where,a 21, b > 1,and f(n) >0

Idea: compare f(n) with n'°g, a

» f(n) is asymptotically smaller or larger than n'°9b“ by a

polynomial factor n¢

- f(n) is asymptotically equal with n'°9b0

48



Master’'s method

“Cookbook” for solving recurrences of the form:

T(n) = aT(Ej + f(n)
where,a 21, b>1,and f(n) >0

Case I: if f(n) = O(nl°9,2-¢) for some ¢ > O, then: T(n) = O(nl°9 9)
Case 2: if f(n) = ©(nl°9,2), then: T(n) = ©(n'°9, 2 Ign)
Case 3: if f(n) = Q(nl°9,a+) for some ¢ > O,and if

af(n/b) < cf(n) for some ¢ < | and all sufficiently large n, then:

( T(n) = O(f(n))

regularity condition
49



Examples

T(n) = 2T(n/2) + n
a=2,b=2,log,2=1
Compare h'°9,2 with f(n) = n
= f(n) = ®(n) = Case 2

= T(n) = ©(nlgn)
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Examples

T(n) = 2T(n/2) + n®
a=2,b=2,log,2 =1
Compare h with f(n) = n?
= f(n) = Q(n!*¢) Case 3 = verify regularity cond.
a f(n/b) < ¢ f(n)
< 2n2/4<cn?=c= 3isasolution (c<1)
= T(n) = ©(n?)
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Examples (cont.)

T(h) = 2T(n/2) + +/n
a=2,b=2,log,2 =1
Compare h with f(n) = nl/2
= f(n) = O(n'*) Case |

= T(n) = 6(n)
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Examples

T(n) = 3T(n/4) + nlgn
a=3,b=4,log,3=0.793
Compare n%793 with f(n) = nign
f(n) = Q(nleg,3+) Case 3
Check regularity condition:
3*(n/4)Ilg(n/4) < (3/4)nlgn = ¢ *f(n), c=3/4
= T(n) = ©(nign)
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Examples

T(n) = 2T(n/2) + nlgn
a=2,b=2,log,2=1
» Compare n with f(n) = nign
— seems like case 3 should apply

* f(n) must be polynomially larger by a factor of n®

* In this case it is only larger by a factor of Ign
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Readings

 Appendix A, Chapter 4

N2

:
By
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