
Analysis and Design of
Algorithms

Recurrence Relations

Instructor: Morteza Zakeri

Modified and eXtended version of Slides from George Bebis

(Appendix A, Chapter 4)

Recurrence relations

• Many counting problems can be solved with

recurrence relations

• Example:

– The number of bacteria doubles every 2 hours. If a colony

begins with 5 bacteria, how many will be present in n hours?

• Solution:

– Let an=2an-1 where n is a positive integer with a0=5

2

Recurrence relations

• A recurrence relation for the sequence {an} is an

equation that expresses an in terms of 1 or more of

the previous terms of the sequence, i.e., a0, a1, …, an-1,

for all integers n with n≥n0 where n0 is a nonnegative

integer

• A sequence is called a solution of a recurrence

relation if its terms satisfy the recurrence relation

3

Example

• Let {an} be a sequence that satisfies the recurrence

relation an = an-1 – an-2 for n = 2, 3, 4, … and suppose

that a0 = 3 and a1 = 5, what are a2 and a3?

• Using the recurrence relation, a2 = a1-a0 = 5 - 3 = 2

and a3 = a2 - a1 = 2 - 5 = -3

4

Example

• Determine whether the sequence {an}, where an=3n

for every nonnegative integer n, is a solution of the

recurrence relation an=2an-1 – an-2 for n=2, 3, 4, …

– Suppose an = 3n for every nonnegative integer n.

– Then for n ≥ 2, we have 2an-1-an-2 = 2(3(n-1))-3(n-2) = 3n

= an.

– Thus, {an} where an = 3n is a solution for the recurrence

relation

5

Modeling with recurrence relations

• Compound interest: Suppose that a person deposits

$10,000 in a savings account at a bank yielding 11%

per year with interest compounded annually. How

much will it be in the account after 30 years?

• Let Pn denote the amount in the account after n

years.

• The amount after n years equals the amount in the

amount after n-1 years plus interest for the n-th year,

we see the sequence {Pn} has the recurrence

relation

Pn = Pn-1+0.11Pn-1 = (1.11)Pn-1

6

Modeling with recurrence relations

• The initial condition P0=10,000, thus

• P1 = (1.11)P0

• P2 = (1.11)P1 = (1.11)2P0

• P3=(1.11)P2 = (1.11)3P0

• …

• Pn = (1.11)Pn-1 = (1.11)nP0

• We can use mathematical induction to establish its

validity

7

Modeling with recurrence relations

• We can use mathematical induction to establish its

validity

• Assume Pn=(1.11)n10,000.

• Then from the recurrence relation and the induction

hypothesis

▪ Pn+1 = (1.11)Pn

▪ = (1.11)(1.11)n10,000 = (1.11)n+110,000

▪ N = 30, P30 = (1.11)3010,000 = 228,922.97

8

Recursion and recurrence

• A recursive algorithm provides the solution of a

problem of size n in terms of the solutions of one or

more instances of the same problem of smaller size

• When we analyze the complexity of a recursive

algorithm, we obtain a recurrence relation that

expresses the number of operations required to

solve a problem of size n in terms of the number of

operations required to solve the problem for one or

more instance of smaller size.

9

10

Recurrences and Running Time

• An equation or inequality that describes a function in terms of

its value on smaller inputs.

T(n) = T(n-1) + n

• Recurrences arise when an algorithm contains recursive calls

to itself.

• What is the actual running time of the algorithm?

• Need to solve the recurrence

– Find an explicit formula of the expression

– Bound the recurrence by an expression that involves n

11

Example Recurrences

• T(n) = T(n-1) + n Θ(n2)
– Recursive algorithm that loops through the input to

eliminate one item

• T(n) = T(n/2) + c Θ(lgn)
– Recursive algorithm that halves the input in one step

• T(n) = T(n/2) + n Θ(n)
– Recursive algorithm that halves the input but must

examine every item in the input

• T(n) = 2T(n/2) + 1 Θ(n)
– Recursive algorithm that splits the input into 2 halves and

does a constant amount of other work

12

Recurrent Algorithms
BINARY-SEARCH

• for an ordered array A, finds if x is in the array A[lo…hi]

Alg.: BINARY-SEARCH (A, lo, hi, x)

if (lo > hi)

return FALSE

mid  (lo+hi)/2

if x = A[mid]

return TRUE

if (x < A[mid])

BINARY-SEARCH (A, lo, mid-1, x)

if (x > A[mid])

BINARY-SEARCH (A, mid+1, hi, x)

12111097532

1 2 3 4 5 6 7 8

mid
lo hi

13

Example

• A[8] = {1, 2, 3, 4, 5, 7, 9, 11}

– lo = 1 hi = 8 x = 7

mid = 4, lo = 5, hi = 8

mid = 6, A[mid] = x

Found!

119754321

119754321

1 2 3 4 5 6 7 8

8765

14

Another Example

• A[8] = {1, 2, 3, 4, 5, 7, 9, 11}

– lo = 1 hi = 8 x = 6

mid = 4, lo = 5, hi = 8

mid = 6, A[6] = 7, lo = 5, hi = 5119754321

119754321

1 2 3 4 5 6 7 8

119754321 mid = 5, A[5] = 5, lo = 6, hi = 5

NOT FOUND!

119754321

low high

low

lowhigh

high

15

Analysis of BINARY-SEARCH

Alg.: BINARY-SEARCH (A, lo, hi, x)

if (lo > hi)
return FALSE

mid  (lo+hi)/2
if x = A[mid]

return TRUE

if (x < A[mid])

BINARY-SEARCH (A, lo, mid-1, x)

if (x > A[mid])

BINARY-SEARCH (A, mid+1, hi, x)

• T(n) = c +

– T(n): running time for an array of size n

constant time: c2

same problem of size n/2

same problem of size n/2

constant time: c1

constant time: c3

T(n/2)

Types of recurrence relations

• Linear vs. non-linear

– A recurrence relation for a sequence S(n) is linear if the

earlier values of S appearing in the definition occur only to

the first power.

– e.g.,

• Constant coefficient vs. variable coefficients

– The recurrence relation has constant coefficients is the fi’s

are all constants.

– e.g.,
16

Types of recurrence relations

• First order vs. higher order

– It is first-order if the nth term depends only on term n−1.

– e.g., second order recurrence relations:

• Homogeneous vs. non-homogeneous

– Recurrence relation is homogeneous if g(n)=0 for all n.

• Linear first-order recurrence relations with

constant coefficients have the form:

S(n) = cS(n−1) + g(n)

17

Example of recurrence relations

• These are some examples of well-known linear

recurrence equations

18

Solving recurrences relations

• From mathematical induction

• We can often solve a recurrence relation in a manner

analogous to solving a differential equations.

19

20

Methods for Solving Recurrences

• Iteration method

– Most simple method

• Characteristic equation

– Mostly for Linear Recurrence Relations

• Substitution method

– Mostly for Linear Recurrence Relations

• Recursion tree method

– Mostly for Divide and Conquer Recurrence Relations

• Master theorem method

– Mostly for Divide and Conquer Recurrence Relations

21

Methods for Solving Recurrences

• Iteration method

• Characteristic equation

• Substitution method

• Recursion tree method

• Master theorem method

22

The Iteration Method

• Convert the recurrence into a summation and try to

bound it using known series

– Iterate the recurrence until the initial condition is reached.

– Use back-substitution to express the recurrence in terms

of n and the initial (boundary) condition.

23

The Iteration Method

T(n) = c + T(n/2)

T(n) = c + T(n/2)

= c + c + T(n/4)

= c + c + c + T(n/8)

Assume n = 2k

T(n) = c + c + … + c + T(1)

= clgn + T(1)

= Θ(lgn)

k times

T(n/2) = c + T(n/4)

T(n/4) = c + T(n/8)

24

Iteration Method – Example

T(n) = n + 2T(n/2)

T(n) = n + 2T(n/2)

= n + 2(n/2 + 2T(n/4))

= n + n + 4T(n/4)

= n + n + 4(n/4 + 2T(n/8))

= n + n + n + 8T(n/8)

… = in + 2iT(n/2i)

= kn + 2kT(1)

= nlgn + nT(1) = Θ(nlgn)

Assume: n = 2k

T(n/2) = n/2 + 2T(n/4)

25

Methods for Solving Recurrences

• Iteration method

• Characteristic equation

• Substitution method

• Recursion tree method

• Master theorem method

The characteristic equation method

• Linear homogenous recurrence relations with

constant coefficients

26

characteristic equation

Theorem 1

27

Example

28

Example: Fibonacci numbers

29

30

31

32

Methods for Solving Recurrences

• Iteration method

• Characteristic equation

• Substitution method

• Recursion tree method

• Master theorem method

33

The substitution method

1. Guess a solution

2. Use induction to prove that the

solution works

34

Substitution method

• Guess a solution

– T(n) = O(g(n))

– Induction goal: apply the definition of the asymptotic notation

• T(n) ≤ d g(n), for some d > 0 and n ≥ n0

– Induction hypothesis: T(k) ≤ d g(k) for all k < n

• Prove the induction goal

– Use the induction hypothesis to find some values of the constants

d and n0 for which the induction goal holds

(strong induction)

35

Example: Binary Search

T(n) = c + T(n/2)

• Guess: T(n) = O(lgn)

– Induction goal: T(n) ≤ d lgn, for some d and n ≥ n0

– Induction hypothesis: T(n/2) ≤ d lg(n/2)

• Proof of induction goal:

T(n) = T(n/2) + c ≤ d lg(n/2) + c

= d lgn – d + c ≤ d lgn

if: – d + c ≤ 0, d ≥ c

• Base case?

36

Example 2

T(n) = T(n-1) + n

• Guess: T(n) = O(n2)

– Induction goal: T(n) ≤ c n2, for some c and n ≥ n0

– Induction hypothesis: T(n-1) ≤ c(n-1)2 for all k < n

• Proof of induction goal:

T(n) = T(n-1) + n ≤ c (n-1)2 + n

= cn2 – (2cn – c - n) ≤ cn2

if: 2cn – c – n ≥ 0  c ≥ n/(2n-1)  c ≥ 1/(2 – 1/n)

– For n ≥ 1  2 – 1/n ≥ 1  any c ≥ 1 will work

37

Example 3

T(n) = 2T(n/2) + n

• Guess: T(n) = O(nlgn)

– Induction goal: T(n) ≤ cn lgn, for some c and n ≥ n0

– Induction hypothesis: T(n/2) ≤ cn/2 lg(n/2)

• Proof of induction goal:

T(n) = 2T(n/2) + n ≤ 2c (n/2)lg(n/2) + n

= cn lgn – cn + n ≤ cn lgn

if: - cn + n ≤ 0  c ≥ 1

• Base case?

38

Changing variables

– Rename: m = lgn  n = 2m

T (2m) = 2T(2m/2) + m

– Rename: S(m) = T(2m)

S(m) = 2S(m/2) + m  S(m) = O(mlgm)

(demonstrated before)

T(n) = T(2m) = S(m) = O(m.lgm)=O(lgn.lglg(n))

Idea: transform the recurrence to one that you have

seen before

T(n) = 2T() + lgnn

39

Methods for Solving Recurrences

• Iteration method

• Characteristic equation

• Substitution method

• Recursion tree method

• Master theorem method

40

The recursion-tree method

Convert the recurrence into a tree:

– Each node represents the cost incurred at various levels

of recursion

– Sum up the costs of all levels

Used to “guess” a solution for the recurrence

41

Example 1

W(n) = 2W(n/2) + n2

• Subproblem size at level i is: n/2i

• Subproblem size hits 1 when 1 = n/2i  i = lgn

• Cost of the problem at level i = (n/2i)2 No. of nodes at level i = 2i

• Total cost:

 W(n) = O(n2)

22

0

2
1lg

0

2lg
1lg

0

2

2)(

2
11

1
)(

2

1

2

1
)1(2

2
)(nnOnnOnnnW

n
nW

i

in

i

i

n
n

i
i

=+
−

=+







+








=+= 



=

−

=

−

=

42

Example 2

E.g.: T(n) = 3T(n/4) + cn2

• Subproblem size at level i is: n/4i

• Subproblem size hits 1 when 1 = n/4i  i = log4n

• Cost of a node at level i = c(n/4i)2

• Number of nodes at level i = 3i  last level has 3log
4

n = nlog
4

3 nodes

• Total cost:

 T(n) = O(n2)

() () ())(

16

3
1

1

16

3

16

3
)(23log23log2

0

3log2
1log

0

444

4

nOncnncnncnnT
i

iin

i

=+

−

=+







+








= 



=

−

=

43

Example 2 - Substitution

T(n) = 3T(n/4) + cn2

• Guess: T(n) = O(n2)

– Induction goal: T(n) ≤ dn2, for some d and n ≥ n0

– Induction hypothesis: T(n/4) ≤ d (n/4)2

• Proof of induction goal:

T(n) = 3T(n/4) + cn2

≤ 3d (n/4)2 + cn2

= (3/16) d n2 + cn2

≤ d n2 if: d ≥ (16/13)c

• Therefore: T(n) = O(n2)

44

Example 3 (simpler proof)

W(n) = W(n/3) + W(2n/3) + n

• The longest path from the root to

a leaf is:

n → (2/3)n → (2/3)2 n → … → 1

• Subproblem size hits 1 when

1 = (2/3)in  i=log3/2n

• Cost of the problem at level i = n

• Total cost:

 W(n) = O(nlgn)

3/ 2

lg
() ... (log) (lg)

3
lg

2

n
W n n n n n n O n n + + = = =

45

Example 3

W(n) = W(n/3) + W(2n/3) + n

• The longest path from the root to

a leaf is:

n → (2/3)n → (2/3)2 n → … → 1

• Subproblem size hits 1 when

1 = (2/3)in  i=log3/2n

• Cost of the problem at level i = n

• Total cost:

 W(n) = O(nlgn)

3 / 2

3 / 2

(log) 1
(log)

0

() ... 2 (1)
n

n

i

W n n n n W
−

=

 + + = + 
3 / 2

3 / 2

log
log 2

3/ 2

0

lg 1
1 log () () lg ()

lg3/ 2 lg3/ 2

n

i

n
n n n n O n n O n n n O n

=

 + = + = + = +

46

Example 3 - Substitution

W(n) = W(n/3) + W(2n/3) + O(n)

• Guess: W(n) = O(nlgn)

– Induction goal: W(n) ≤ dnlgn, for some d and n ≥ n0

– Induction hypothesis: W(k) ≤ d klgk for any K < n
(n/3, 2n/3)

• Proof of induction goal:

Try it out as an exercise!!

• T(n) = O(nlgn)

47

Methods for Solving Recurrences

• Iteration method

• Characteristic equation

• Substitution method

• Recursion tree method

• Master (theorem) method

48

Master’s method

• “Cookbook” for solving recurrences of the form:

where, a ≥ 1, b > 1, and f(n) > 0

Idea: compare f(n) with nlog
b
a

• f(n) is asymptotically smaller or larger than nlog
b
a by a

polynomial factor n

• f(n) is asymptotically equal with nlog
b
a

)()(nf
b

n
aTnT +








=

49

Master’s method

• “Cookbook” for solving recurrences of the form:

where, a ≥ 1, b > 1, and f(n) > 0

Case 1: if f(n) = O(nlog
b
a -) for some  > 0, then: T(n) = (nlog

b
a)

Case 2: if f(n) = (nlog
b
a), then: T(n) = (nlog

b
a lgn)

Case 3: if f(n) = (nlog
b
a +) for some  > 0, and if

af(n/b) ≤ cf(n) for some c < 1 and all sufficiently large n, then:

T(n) = (f(n))

)()(nf
b

n
aTnT +








=

regularity condition

51

Examples

T(n) = 2T(n/2) + n

a = 2, b = 2, log22 = 1

Compare nlog
2

2 with f(n) = n

 f(n) = (n)  Case 2

 T(n) = (nlgn)

52

Examples

T(n) = 2T(n/2) + n2

a = 2, b = 2, log22 = 1

Compare n with f(n) = n2

 f(n) = (n1+) Case 3  verify regularity cond.

a f(n/b) ≤ c f(n)

 2 n2/4 ≤ c n2  c = ½ is a solution (c<1)

 T(n) = (n2)

53

Examples (cont.)

T(n) = 2T(n/2) +

a = 2, b = 2, log22 = 1

Compare n with f(n) = n1/2

 f(n) = O(n1-) Case 1

 T(n) = (n)

n

54

Examples

T(n) = 3T(n/4) + nlgn

a = 3, b = 4, log43 = 0.793

Compare n0.793 with f(n) = nlgn

f(n) = (nlog
4

3+) Case 3

Check regularity condition:

3(n/4)lg(n/4) ≤ (3/4)nlgn = c f(n), c=3/4

T(n) = (nlgn)

55

Examples

T(n) = 2T(n/2) + nlgn

a = 2, b = 2, log22 = 1

• Compare n with f(n) = nlgn

– seems like case 3 should apply

• f(n) must be polynomially larger by a factor of n

• In this case it is only larger by a factor of lgn

Readings

• Appendix A, Chapter 4

56

