
Analysis and Design of
Algorithms

Asymptotic Analysis

Instructor: Morteza Zakeri

Slide by: George Bebis

(Chapter 3, Appendix A)

2

Analysis of Algorithms

• An algorithm is a finite set of precise instructions for

performing a computation or for solving a problem.

• What is the goal of analysis of algorithms?

– To compare algorithms mainly in terms of running time but
also in terms of other factors (e.g., memory requirements,

programmer's effort, etc.)

• What do we mean by running time analysis?

– Determine how running time increases as the size
of the problem increases.

3

Input Size

• Input size (number of elements in the input)

– size of an array

– polynomial degree

– # of elements in a matrix

– # of bits in the binary representation of the input

– vertices and edges in a graph

4

Types of Analysis

• Worst case

– Provides an upper bound on running time

– An absolute guarantee that the algorithm would not run longer, no

matter what the inputs are

• Best case

– Provides a lower bound on running time

– Input is the one for which the algorithm runs the fastest

• Average case

– Provides a prediction about the running time

– Assumes that the input is random

Lower Bound Running Time Upper Bound 

5

How do we compare algorithms?

• We need to define a number of objective
measures.

(1) Compare execution times?

Not good: times are specific to a particular computer
(hardware, machine, etc.) !!

(2) Count the number of statements executed?

Not good: number of statements vary with the
programming language as well as the style of the
individual programmer.

6

Ideal Solution

• Express running time as a function of the input

size n (i.e., f(n)).

• Compare different functions corresponding to

running times.

• Such an analysis is independent of machine

time, programming style, etc.

7

Example

• Associate a "cost" with each statement.

• Find the "total cost“ by finding the total number of times
each statement is executed.

Algorithm 1 Algorithm 2

Cost Cost
arr[0] = 0; c1 for(i=0; i<N; i++) c2

arr[1] = 0; c1 arr[i] = 0; c1

arr[2] = 0; c1

... ...
arr[N-1] = 0; c1

----------- -------------
c1+c1+...+c1 = c1 x N (N+1) x c2 + N x c1 =

(c2 + c1) x N + c2

8

Another Example

• Algorithm 3 Cost

sum = 0; c1

for(i=0; i<N; i++) c2

for(j=0; j<N; j++) c2

sum += arr[i][j]; c3

c1 + c2 x (N+1) + c2 x N x (N+1) + c3 x N2

9

Asymptotic Analysis

• To compare two algorithms with running

times f(n) and g(n), we need a rough

measure that characterizes how fast each

function grows.

• Hint: use rate of growth

• Compare functions in the limit, that is,
asymptotically (مجانبی) !

(i.e., for large values of n)

10

Rate of Growth

• Consider the example of buying elephants and
goldfish:

Cost: cost_of_elephants + cost_of_goldfish

Cost ~ cost_of_elephants (approximation)

• The low order terms in a function are relatively
insignificant for large n

n4 + 100n2 + 10n + 50 ~ n4

i.e., we say that n4 + 100n2 + 10n + 50 and n4 have the
same rate of growth

11

Asymptotic Notation

• O notation: asymptotic “less than”:

– f(n) = O(g(n)) implies: f(n) “≤” g(n)

•  notation: asymptotic “greater than”:

– f(n) =  (g(n)) implies: f(n) “≥” g(n)

•  notation: asymptotic “equality”:

– f(n) =  (g(n)) implies: f(n) “=” g(n)

12

Big-O Notation

• We say fA(n)=30n+8 is order n, or O(n)

It is, at most, roughly proportional to n.

• fB(n)=n2+1 is order n2, or O(n2). It is, at most,

roughly proportional to n2.

• In general, any O(n2) function is faster- growing

than any O(n) function.

13

Visualizing Orders of Growth

• On a graph, as

you go to the

right, a faster

growing

function

eventually

becomes

larger...

fA(n)=30n+8

Increasing n →

fB(n)=n2+1

V
al

u
e

o
f

fu
n
ct

io
n
 →

14

More Examples …

• n4 + 100n2 + 10n + 50 is O(n4)

• 10n3 + 2n2 is O(n3)

• n3 - n2 is O(n3)

• Constants

– 10 is O(1)

– 1273 is O(1)

15

Back to Our Example

Algorithm 1 Algorithm 2

Cost Cost
arr[0] = 0; c1 for(i=0; i<N; i++) c2

arr[1] = 0; c1 arr[i] = 0; c1

arr[2] = 0; c1

...
arr[N-1] = 0; c1

----------- -------------
c1+c1+...+c1 = c1 x N (N+1) x c2 + N x c1 =

(c2 + c1) x N + c2

• Both algorithms are of the same order: O(N)

16

Example (cont’d)

Algorithm 3 Cost

sum = 0; c1

for(i=0; i<N; i++) c2

for(j=0; j<N; j++) c2

sum += arr[i][j]; c3

c1 + c2 x (N+1) + c2 x N x (N+1) + c3 x N2 = O(N2)

17

Asymptotic notations

• O-notation (formal definition)

18

Big-O Visualization

O(g(n)) is the set of

functions with smaller

or same order of

growth as g(n)

19

Examples

– 2n2 = O(n3):

– n2 = O(n2):

– 1000n2+1000n = O(n2):

– n = O(n2):

2n2 ≤ cn3  2 ≤ cn  c = 1 and n0= 2

n2 ≤ cn2  c ≥ 1  c = 1 and n0= 1

1000n2+1000n ≤ 1000n2+ n2 =1001n2 c=1001 and n0 = 1000

n ≤ cn2  cn ≥ 1  c = 1 and n0= 1

20

More Examples

• Show that 30n+8 is O(n).

– Show c,n0: 30n+8  cn, n>n0 .

• Let c=31, n0=8. Assume n>n0=8. Then

cn = 31n = 30n + n > 30n+8, so 30n+8 < cn.

21

• Note 30n+8 isn’t

less than n

anywhere (n>0).

• It isn’t even

less than 31n

everywhere.

• But it is less than

31n everywhere to

the right of n=8.

n>n0=8 →

Big-O example, graphically

Increasing n →

V
al

u
e

o
f

fu
n
ct

io
n
 →

n

30n+8

cn =

31n

30n+8

O(n)

22

No Uniqueness

• There is no unique set of values for n0 and c in proving the

asymptotic bounds

• Prove that 100n + 5 = O(n2)

– 100n + 5 ≤ 100n + n = 101n ≤ 101n2

for all n ≥ 5

n0 = 5 and c = 101 is a solution

– 100n + 5 ≤ 100n + 5n = 105n ≤ 105n2

for all n ≥ 1

n0 = 1 and c = 105 is also a solution

Must find SOME constants c and n0 that satisfy the asymptotic notation relation

23

Asymptotic notations (cont.)

• -notation

(g(n)) is the set of functions

with larger or same order of

growth as g(n)

24

Examples

– 5n2 = (n)

– 100n + 5 ≠ (n2)

– n = (2n), n3 = (n2), n = (logn)

 c, n0 such that: 0  cn  5n2  cn  5n2  c = 1 and n0 = 1

 c, n0 such that: 0  cn2  100n + 5

100n + 5  100n + 5n ( n  1) = 105n

cn2  105n n(cn – 105)  0

Since n is positive  cn – 105  0  n  105/c

 contradiction: n cannot be smaller than a constant

25

Asymptotic notations (cont.)

• -notation

(g(n)) is the set of functions

with the same order of

growth as g(n)

26

Examples

❑n2/2 –n/2 = (n2)

• ½ n2 - ½ n ≤ ½ n2 n ≥ 0  c2= ½

• ½ n2 - ½ n ≥ ½ n2 - ½ n * ½ n (n ≥ 2) = ¼ n2

 c1= ¼

❑n ≠ (n2): c1 n2 ≤ n ≤ c2 n2

 only holds for: n ≤ 1/c1

27

Examples

– 6n3 ≠ (n2): c1 n2 ≤ 6n3 ≤ c2 n2

 only holds for: n ≤ c2 /6

– n ≠ (logn): c1 logn ≤ n ≤ c2 logn

 c2 ≥ n/logn,  n≥ n0 – impossible

28

• Subset relations between order-of-growth sets.

Relations Between Different Sets

R→R
(f)O(f)

(f)

• f

29

Common orders of magnitude

30

Common orders of magnitude

31

Logarithms and properties

• In algorithm analysis we often use the notation “log n” without

specifying the base

nn

nn

elogln

loglg 2

=

= =yxlogBinary logarithm

Natural logarithm

)lg(lglglg

)(lglg

nn

nn kk

=

=

xy log

=xylog yx loglog +

=
y

x
log yx loglog −

logb x =

abx
log

=
xba

log

log

log

a

a

x

b

32

More Examples

• For each of the following pairs of functions, either f(n) is

O(g(n)), f(n) is Ω(g(n)), or f(n) = Θ(g(n)). Determine which

relationship is correct.

– f(n) = log n2; g(n) = log n + 5

– f(n) = n; g(n) = log n2

– f(n) = log log n; g(n) = log n

– f(n) = n; g(n) = log2 n

– f(n) = n log n + n; g(n) = log n

– f(n) = 10; g(n) = log 10

– f(n) = 2n; g(n) = 10n2

– f(n) = 2n; g(n) = 3n

f(n) =  (g(n))

f(n) = (g(n))

f(n) = O(g(n))

f(n) = (g(n))

f(n) = (g(n))

f(n) = (g(n))

f(n) = (g(n))

f(n) = O(g(n))

33

Properties

• Theorem:

f(n) = (g(n))  f = O(g(n)) and f = (g(n))

• Transitivity:

– f(n) = (g(n)) and g(n) = (h(n))  f(n) = (h(n))

– Same for O and 

• Reflexivity:

– f(n) = (f(n))

– Same for O and 

• Symmetry:

– f(n) = (g(n)) if and only if g(n) = (f(n))

• Transpose symmetry:

– f(n) = O(g(n)) if and only if g(n) = (f(n))

34

Asymptotic Notations in Equations

• On the right-hand side

– (n2) stands for some anonymous function in (n2)

2n2 + 3n + 1 = 2n2 + (n) means:

There exists a function f(n)  (n) such that

2n2 + 3n + 1 = 2n2 + f(n)

• On the left-hand side

2n2 + (n) = (n2)

No matter how the anonymous function is chosen on the

left-hand side, there is a way to choose the anonymous

function on the right-hand side to make the equation valid.

35

Common Summations

• Arithmetic series:

• Geometric series:

– Special case: |x| < 1:

• Harmonic series:

• Other important formulas:

2

)1(+nn

=

=+++=
n

k

nk
1

...21

()1
1

11


−

−+

x
x

xn

=++++=
=

n
n

k

k xxxx ...1 2

0

x−1

1
=



=0k

kx

nln
=

+++=
n

k nk1

1
...

2

1
1

1


=

n

k

k
1

lg nn lg

1

1

1 +

+

pn
p


=

+++=
n

k

pppp nk
1

...21

36

Mathematical Induction (استقرا)

• A powerful, rigorous technique for proving that a

statement S(n) is true for every natural number n, no

matter how large.

• Proof:

– Basis step: prove that the statement is true for n = 1

– Inductive step: assume that S(n) is true and prove that

S(n+1) is true for all n ≥ 1

• Find case n “within” case n+1

37

Example

• Prove that: 2n + 1 ≤ 2n for all n ≥ 3

• Basis step:

– n = 3: 2  3 + 1 ≤ 23  7 ≤ 8 TRUE

• Inductive step:

– Assume inequality is true for n, and prove it for (n+1):

2n + 1 ≤ 2n must prove: 2(n + 1) + 1 ≤ 2n+1

2(n + 1) + 1 = (2n + 1) + 2 ≤ 2n + 2 ≤

 2n + 2n = 2n+1, since 2 ≤ 2n for n ≥ 1

