Analysis and Design of
Algorithms

Asymptotic Analysis

Instructor: Morteza Zakeri
Slide by: George Bebis

Y

N\
(Chapter 3,Appendix A)
AV

Analysis of Algorithms

* An algorithm is a finite set of precise instructions for
performing a computation or for solving a problem.

* What is the goal of analysis of algorithms!?

— To compare algorithms mainly in terms of running time but
also in terms of other factors (e.g., memory requirements,

programmer's effort, etc.)

* What do we mean by running time analysis?

— Determine how running time increases as the size
of the problem increases.

Input Size

* Input size (humber of elements in the input)

— size of an array

— polynomial degree

— # of elements in a matrix

— # of bits in the binary representation of the input

— vertices and edges in a graph

Types of Analysis

* Worst case

— Provides an upper bound on running time

— An absolute guarantee that the algorithm would not run longer, no
matter what the inputs are

e Best case

— Provides a lower bound on running time

— Input is the one for which the algorithm runs the fastest

Lower Bound < Running Time<Upper Bound

* Average case
— Provides a prediction about the running time

— Assumes that the input is random

How do we compare algorithms?

* We need to define a number of objective
measures.

(I) Compare execution times!?

Not good: times are specific to a particular computer
(hardware, machine, etc.) !!

(2) Count the number of statements executed?

Not good: number of statements vary with the
programming language as well as the style of the
individual programmer.

ldeal Solution

* Express running time as a function of the input
size n (i.e., f(n)).

* Compare different functions corresponding to
running times.

* Such an analysis is independent of machine
time, programming style, etc.

Example

 Associate a "cost” with each statement.

* Find the "total cost* by finding the total number of times
each statement is executed.

Algorithm | Algorithm 2
Cost Cost
arr[0] = 0; C for(i=0; i<N; i++) c,
arr[1]=0; C arr[i] = 0; C
arr[2] = 0;

arr[N-11=0; ¢,

Another Example

* Algorithm 3 Cost
sum = 0; C
for(i=0; i<N; i++) c,

for(j=0; j<N; j++) C
sum += arr|i][j]; Cy

¢, ¢, x (N+1)+ ¢, x Nx (N+1) + ¢c; x N?

Asymptotic Analysis

* To compare two algorithms with running
times f(n) and g(n), we need a rough
measure that characterizes how fast each
function grows.

* Hint: use rate of growth

* Compare functions in the limit, that is,
asymptotically (.slxo) !

(i.e., for large values of n)

Rate of Growth

* Consider the example of buying elephants and
goldfish:

Cost: cost_of elephants + cost_of goldfish
Cost ~ cost_of elephants (approximation)

* The low order terms in a function are relatively
insignificant for large n

nt*+ 100n2+ I10n+50 ~ n?

i.e., we say that n* + 100n? + 10n + 50 and n* have the
same rate of growth

10

Asymptotic Notation

O notation: asymptotic “less than’;

— f(n) = O(g(n)) implies: f(n) “<” g(n)

() notation: asymptotic “‘greater than’:
— f(n) = Q (g(n)) implies: f(n) “=" g(n)

® notation: asymptotic “equality’:

— f(n) = ® (g(n)) implies: f(n) “=" g(n)

11

Big-O Notation

* We say fo(n)=30n+8 is order n, or O(n)
It is, at most, roughly proportional to n.

* fa(n)=n?+1 is order n? or O(n?). It is, at most,
roughly proportional to n?.

* In general,any O(n?) function is faster- growing
than any O(n) function.

12

Visualizing Orders of Growth

* On agraph,as
you go to the
right, a faster

growing A
function S T (n)=30n+8
eventually §
becomes qE
larger... S
=
S

Increasing n —

13

More Examples ...

n*+ 100n2 + 10n + 50 is O(n*)
10n3 + 2n? is O(n?)

n3 - n? is O(n%)

Constants

~ 10is O(1)

1273 s O(1)

14

Back to Our Example

Algorithm | Algorithm 2
Cost Cost
arr[0] = O; C for(i=0; i<N;i++) c,
arr[1] =0; C arr[i] = 0; C
arr[2] = 0; C

arr[N-11=0; ¢,

c,tc,t...+c, =c¢; x N (N+l)xc,+ Nxc, =
(¢ +¢)xN+q

* Both algorithms are of the same order: O(N)

15

Example (cont'd)

Algorithm 3 Cost
sum = 0; C
for(i=0; i<N; i++) C,

for(j=0; j<N; j++) C)
sum += arrl[i][j]; Cy

¢, + ¢, x (N+1) + ¢, x Nx (N+1) + c; x N> = O(N?)

16

Asymptotic notations

e O-notation (formal definition)

O(g(n)) = {f(n): there exist positive constants ¢ and n, such that
0< f(n)<cg(n)toralln = ny} .

cgln)

g(n) 1s an asymptotic upper bound for f (n).

17

Big-O Visualization

O(g(n)) is the set of

2
O(N™) functions with smaller

or same order of

O(N)

2
2N 10N +100

3N+10

growth as g(n)

30

100N

2MN-1 10M+5

100

3 100N

0(1)

10 4
100

O(NlogN)
5MN+10 2M-1
10MlogMN-10M+1

Nlogns+100N

18

Examples

- 2nc=0(n’):2n2<cnd3=2<cn=c=1and ny= 2
- n?=0(n°)n2<cn?=c>» 1 =c=1andny1
- 1000n2+1000n = O(n?):
1000n2+1000n < 1000n2+ n2 =1001n°= ¢=1001 and n, = 1000

- n=0M):n<cn°=cnx1=rc=1and ny=1

19

More Examples

* Show that 30n+8 is O(n).
— Show dc¢,ny: 30n+8 < cn, Vn>n, .

* Let c=31, n,=8. Assume n>n,=8. Then
cn =3ln=30n+ n> 30n+8, so 30n+8 < ¢n.

20

Big-O example, graphically

e Note 30n+8 isn’t
less than n
anywhere (n>0).

e |[tisn’t even
less than 31n
everywhere.

* Butitis less than
31n everywhere to
the right of n=8.

30n+8
eO(n)

Value of function —

Increasing n —

21

No Uniqueness

* There is no unique set of values for ny and ¢ in proving the

asymptotic bounds

 Prove that 100n + 5 = O(n?)
- 100n + 5<100n + n = 101n < 101n2
foralln>b5

no = 5 and ¢ = 101 is a solution

- 100n + 5 < 100n + 5n = 105n < 105n?

foralln>1
no = 1 and ¢ = 105 is also a solution

Must find SOME constants c and n, that satisfy the asymptotic notation relation
22

Asymptotic notations (cont.)

o ()-notation

Q(g(n)) = {f(n): there exist positive constants ¢ and », such that
0 <cg(n) < f(n)torall n = ny} .

fn)

Q(g(n)) is the set of functions
with larger or same order of

growth as g(n)

g(n) is an asymptotic lower bound tor f (n).

23

Examples

- 5n2=Q(n)

3¢ n,such that: 0< cn< 5w’= cn<b5n°=c=1and ny=1

- 100n + 5 2 Q(n?)
3 ¢, ng such that: 0 <cn?2<100n +5
100n +5 <100n + 5n (Vv n>1) = 105n
cn? <105n= n(cnh - 105) <0

Since n is positive = cn - 105 <0 = n <105/c
—> contradiction: » cannot be smaller than a constant

- n = Q(2n), n3 = Q(n?), n = Q(logn)

24

Asymptotic notations (cont.)

e ()-notation

®(g(n)) ={f(n): there exist positive constants ¢, ¢2, and »g such that
0<cigrn) < f(n)<cg(n) toralln = ny} .

[.'E(E’(H}

®(g(n)) is the set of functions
with the same order of

growth as g(n)

g(n) 1s an asymptotically tight bound for f (n).
25

Examples
an2/2 -n/2 = ©(n?)
can?-an<n?Vn20 = =%
con?-YanzVon?-Yan*an(Vn=22)="4n?

= ¢,= 'a

dn 2 ©(n%): ¢, n<n<c, N

= only holds for:n < 1/¢4

26

Examples
- 6n32z O(nN%):c;nN?<bn3<c, n?

—> only holds for:n < c, /6

- nz O(logn): ¢; logn < n< ¢, logn

= ¢, 2 n/logn, ¥V n2 ny - impossible

27

Relations Between Different Sets

* Subset relations between order-of-growth sets.

R—H>R
O(f) Q(f)

*/
(/)

Common orders of magnitude

ISI.H‘J:*!I—

63,5360 —
32,765 -
16,28 —
B19:—

4,096 |- J

2,048 —

1,024 -

L | | I (R Ll - e
I6 32 o4 |28 256 512 14024 2048

=

|
(=]
=
o

Common orders of magnitude

Table 1.4 Execution times for algorithms with the given time complexities
n fin=1lgn Jm=n flo)=nlga flu)=n’ fln) = n’ Jin) =27
1D 0003 pes¥ 001 s 0032 us 0.1 ps (TR L s
20 0004 pes 002 s 0086 s 0.4 ps B LS . ms'
a0 0.005 pes 0.03 s 0,147 ps 0.9 2 27 us i
40 (L005 es 0.04 ps 0213 s 1.6 ps B4 s 18.3 min
S0 0003 s 005 s 0282 us 25 s 25 us 13 days
1F LOOT pes 0.10 ps 0,664 s 100 s 1 ms 4 % 10" vears
lig (LR DT 1O us 9906 s 1 ms Is
{ 10° 3 s 0 s 130 s [s 167 min
| 10° 0017 us 0. 10 ms 1 .67 ms 100 5 1.6 days
| 0020 s I ms 19.93 ms 16.7 min 31.7 yzars
147 0023 us 0.01 = 023 s 1. 16 days 31,709 years
[0* 0027 s 0.1 5 2660 5 115.7 days 317 = 10 vears
107 QU050 us & 20,001 31.7 years

*| pes o= 107% w=omd,
"Ims = 107F zemond.

30

Logarithms and properties

* In algorithm analysis we often use the notation “log n” without

specifying the base

Binary logarithm lgn — 10g2 n
Natural logarithm Inn = loge n

lg" n = (lgn)"*
lglgn =1g(lgn)

logxy — ylogx

logxy = logx+logy

logﬁz logx —logy
Y

log, x log, a

a®* = x

log, x = log, x

log, b

31

More Examples

* For each of the following pairs of functions, either f(n) is

O(g(n)), f(n) is Q(g(n)), or f(n) = ©(g(n)). Determine which
relationship is correct.

- f(n) = logn?, g(n)=loghn +5 f(n) = © (g(n))

- f(n) = n: g(n) = log n f(n) = Q(g(n))
- f(n) = log log n; g(n) = log n f(n) = O(g(n))
- f(n) = n. g(n) = log® n f(n) = Q(g(n))
- f(n) =nlogn+n; g(n)=logn f(n) = Q(g(n))
- f(n) = 10; g(n) = log 10 f(n) = ©(g(n))
- f(n) = 2"; g(n) = 10n? f(n) = Q(g(n))

- f(n)=2" g(n) = 3" f(n) = O(g(n))

Properties

e Theorem:
f(n) = ©(g(n)) < f = O(g(n)) and f = Q(g(n))
* Transitivity:
- f(n) = ©(g(n)) and g(n) = O(h(n)) = f(n) = O(h(n))
— Same for O and Q
* Reflexivity:
- f(n) = O(f(n))
— Same for O and Q
* Symmetry:
- f(n) = ©(g(n)) if and only if g(n) = O(f(n))
* Transpose symmetry:
- f(n) = O(g(n)) if and only if g(n) = Q(f(n))

33

Asymptotic Notations in Equations

* On the right-hand side
- O(n?) stands for some anonymous function in ®(n?)
2n?2 + 3n+1=2n2+ ®(n) means:
There exists a function f(n) € ®©(n) such that
2n2+ 3n+1=2n2+ f(n)
e On the left-hand side
2n% + O(n) = ©(n?)
No matter how the anonymous function is chosen on the

left-hand side, there is a way to choose the anonymous
function on the right-hand side to make the equation valid.

34

Common Summations

 Arithmetic series:

e Geometric series:

— Special case: x| < 1:

e Harmonic series:

e Other important formulas:

n(n+1)

Zk:1+2+"°+”:
k=1

n n+1_1
Zx" —l+x+x>+. . +x"=
=0 x—1

(x=1)

:1+l+...+l ~Inn

35

Mathematical Induction (1 &)

* A powerful, rigorous technique for proving that a

statement S(n) is true for every natural number n, no
matter how large.

* Proof:

— Basis step: prove that the statement is true for h = 1

— Inductive step: assume that S(n) is true and prove that

S(n+1)is true for all n 2 1

e Find case h “within” case n+1

36

Example

Prove that: 2n+1<2"foralln2> 3
Basis step:
- n=3: 2+%*3+1<¢<23< 7<8TRUE

Inductive step:

— Assume inequality is true for n,and prove it for (n+1):
2n + 1 < 2" must prove: 2(n+ 1)+ 1< 2nl
2in+1)+1=(2n+1)+2¢2"+2¢

<2n+2n=2ml since2<2"forn = |

37

